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Abstract 
 

 Gesture recognition is a field in Computer Science which deals with interpreting 

gestures performed by humans by the use of mathematical models and algorithms. 

Current work in this field comprises of hand-gesture recognition, and emotion 

classification from the face. This report presents a method for hand gesture identification 

and classification of hand gestures, so that they can be used to interact with software. The 

proposed method involves two stages. First, from video feed, samples are extracted, and 

the area containing the hand is detected using a HAAR-like cascade classifier. Thereafter, 

we use a Convolutional Neural Network to classifier to classify the detected hand region 

(which is performing a gesture) into one of four gestures, namely, the closed fist, the 

index finger raised, the first two fingers raised in a V-shape, and the thumb raised. The 

identified gesture can then be mapped to a software action. In this report we describe in 

detail the datasets used to train our models, the methods used to detect the hand region 

from the video feed, as well as the design, implementation and working of the 

Convolutional Neural Network used to classify the gestures. Finally, we describe the 

results of our work and compared them against standard Architectures for judging the 

Effectiveness of t Proposed Method. 

 

Keywords: Computer Vision, Deep Learning, Gesture recognition, HAAR 

Cascade, Convolutional Neural Network. 
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1. INTRODUCTION 
 

 Since the invention of Computers, it slowly became tightly integrated with our 

daily lives. And with every passing day, with every new technology, innovation, we 

must upgrade ourselves. Nowadays focus has been given to make everything digital 

from analog. Hence reliance of Human Beings on Analog Devices must be reduced. 

Vision based systems are very popular nowadays and now computer can “see”. Hence 

the interaction of Human with the Machines has been quite enriching and user 

friendly affair. Computer Vision based systems must ensure that the Working of the 

Software is Real Time and there exists no lag, must be accurate and robust to any 

environment. In the 20
th

 Century, there has been a huge influx of Man-Machine 

Interactions. However, it brings along a complex set of challenges. Researchers are 

currently working on such challenging problems. Hence, cost of productions of such 

software, controllers, devices are quite high . This is widely used in Image, Gesture, 

Speech, and Sign Language Recognition.  Just like speech, gestures are a mode of 

communication between humans. In fact, some research suggests that human 

communication may have evolved from gestures rather than speech. It is therefore 

unsurprising that several technologies in the recent past have tried to revolutionize 

human-machine interaction (HMI) using gestures.  

 

1.1 Motivation 

Ever since the advent of computing tools, there has been a consistent endeavor 

to improve on the communication barriers between man and machine. Computers of 

the 60‟s had only one mode of interaction between the user and the computer, the 

command-line interface. This prevented the computer from achieving the widespread 

use it has achieved today, and computers were used only in niche applications such as 

defense and space projects. In the mid-80‟s however, graphical user interfaces, or 

GUIs were introduced, and the computer was accessible and usable by the general 

public for everyday tasks.  

In the last decade, there has a been a boom in mobile computing, where users 

interact with using touch-screen display, another path breaking human-machine 

interaction method. The next big thing in Human Computer Interaction (HCI) could 

be touchless devices, where users interact with their mobile devices or traditional 
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computers using gestures, thus greatly simplifying the process. Another area where 

gesture recognition could find use is in the fledgling field of Augmented Reality 

(AR). Indeed, as of today, several of the leading consumer electronics manufacturers 

are using AR natively in their products.  

Therefore, we see that there is ample scope and reason for research in the field 

of gesture recognition, and as a result, several approaches toward gesture recognition, 

both hand gestures and facial gestures are being explored. Our work is a unique 

approach to the same goal, and we believe it is a positive step toward the solution of 

this problem. 
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1.2 Background 

Most of the early work in gesture recognition is very hardware dependent, and 

in some cases requires the user to wear some type of apparatus to track and recognize 

his/her movements and gestures. There are several problems to this approach, the 

most obvious being the user having to wear the apparatus, and this carries out the 

natural and intuitiveness that one would want. Secondly, this type of approach is not 

cost effective, as it requires specialized sensors to detect and recognize human 

gestures. Thus, most of the recent works have tried to capture footage/images of the 

users performing the gesture and then classifying that gesture from the footage/images 

using mathematical models and algorithms. This eliminates the need of specialized 

hardware, as most computers and mobile devices are equipped with a digital camera, 

enabling easy access to video/images.  

Gestures can be static or dynamic. Dynamic gestures are basically a sequence 

of static gestures. Dynamic gestures are much more complex to analyse but are more 

suitable for real time applications. Static gestures, on the other hand are simple, yet 

useful for basic tasks, and they have the additional advantage of being less 

computationally intensive. Several methods have been explored for recognition of 

static gestures from images. Our work focusses on recognition of static gestures from 

video feed. 

 

 

1.3 Summary of previous work 

Gesture Recognition has grabbed many eyeballs in recent history due to its 

wide application in the fields of Human Computer Interaction (HCI), Robotics and 

User Experience (UX). We can divide the existing approaches related to this literature 

broadly into hardware intensive approaches and non-hardware intensive approaches 

based on how features are extracted. Hardware Intensive approaches normally used 

special hardware like depth cameras, Kinect sensors for capturing features from video 

stream and then process the Images to predict the gestures. non-hardware Intensive 

based approaches on the other hand used real time locally available and cheap source 

such as web-cam, smartphone cameras, digital cameras etc. to fetch data and features 
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are extracted using standard Image Processing or Deep Learning Approaches and then 

used various other techniques to predict the gestures. 

 The works which have been done in recent past has the usage of both 

traditional Image Processing and Deep Learning techniques for gesture recognition, 

however Hidden Markov Model has been used more frequently. Hardware intensive 

approaches like Ren et al. [1] used Kinect Sensor to detect hand shapes and then 

proposed finger Earth Movers distance metric to remove noise from data stream. 

However, this approach will work only for open hand gestures. Zhao et al. [2] 

proposed Depth Camera to obtain Structure Steaming Skeletons (SSS) features for 

human gesture recognition. Plawiak et al [3] adopted a methodology to track gestures 

using a special device called DG5 VHand Glove which has 10 sensors. The above 

mentioned approaches mainly extracts feature using some special hardware, which 

makes these approaches far from practical. Since the cost of the apparatus used is 

high, these methods find very less application in day-to-day usage. However, these 

methods are quite accurate owing to dependence on hardware. Less hardware 

intensive approaches are also used recently to recognize gestures. For example, Sefat 

et al. [4] proposed the use of color space and HOG feature to detect gestures, but the 

color space is very sensitive to lighting conditions, hence the robustness of the 

approach cannot be guaranteed. Simao et. al. [5] introduced a novel concept of 

detecting hand gestures using unsupervised approach. Motion based features and use 

of Genetic Algorithms to detect gesture makes this work quite interesting. Hence less 

work on interaction of softwares with machines has motivated us to work on this 

interesting and complex problem. 
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1.4 Summary of present work 

 
The approach we propose consists of two stages. First from the video, frames 

are extracted, and from the frame, the position of the hand is detected. For this 

purpose, a HAAR-cascade classifier was trained to distinguish hand vs. non-hand 

images. These trained classifiers are then used to get a bounding box indicating the 

region of the hand in the frame. Using the co-ordinates of the bounding box, the hand 

region is the cropped out of the frame. If no hand is detected (i.e., no gesture is 

performed) no gesture is reported. 

However, if a hand region is detected in the frame, it is passed on to the next 

stage in which we use a CNN to classify the gesture. For simplicity, only four 

gestures have been used: the hand closed in the form of a fist, the index finger raised, 

the first two fingers raised in a V-shape, and the thumb raised. A CNN was trained on 

several thousand images for this purpose. The cropped out image is then fed as the 

input to the Convolutional Neural Network. Now we are not passing the cropped out 

Image directly , we mask out the Skin Region from the Cropped Image using HSV 

Colorspace and eliminate background Noise . After this step we pass the Masked out 

Skin Image into 6-Layered Deep CNN . This performs feature extraction and 

classification of the image and gives a label for the image provided to it. This label is 

then used to initiate a VLC Media Player Application which must be Preinstalled in 

the Computer . The Gestures are Mapped to Open , Play Video and Close the 

Application . 
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1.5 Organisation of thesis 

This report/thesis is organized as follows: In Chapter 2, a brief theoretical 

background of the theoretical concepts which are used is discussed. Specifically, a 

framework for real-time object detection, and the use of Convolutional Neural 

Networks for image classification are discussed. In Chapter 3, a workflow is proposed 

to recognize gestures from video feed by the authors. In Chapter 4, the 

experimentation performed in order to implement the proposed framework is 

elaborately discussed. In the next chapter, Chapter 5, the results of the 

experimentation performed are dealt with, and some advantages and disadvantages of 

the proposed method are discussed. Finally, in Chapter 6, future possibilities are 

explored, and some conclusions are drawn. 

 

1.6 Resources used 

 
For the purposes of hand detection, we used a machine with a 2.7 GHz, Intel 

 Core i7 CPU, with 16 GiB of memory, running Linux (Ubuntu). For the classification 

and feature extraction using CNN we used a machine with 2.3 GHz Intel Core i5 

CPU, with 4 GiB of memory and a Nvidia GeForce 940M GPU on Linux (Ubuntu). 

Images for training were mostly captured on a mobile phone camera at 1280x720 

resolution. The following libraries and software were used: 

 

 

Purpose Library/Software Used 

Extraction of frames from video FFmpeg 

Hand Detection OpenCV 3.1.0 

 Pillow (forked from PIL) 

 Numpy 

 Matplotlib 

Gesture Classification TensorFlow 

 TFLearn 

 Numpy 

 OpenCV 3.1.0 

 

 

Table. 1.1: Software Libraries used 
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2. THEORETICAL BACKGROUND 
 

 A method for interacting with software using static gestures from video feed is 

proposed, requiring minimal hardware, but achieving high accuracy comparable to 

state-of-the-art algorithms. The proposed approach is broken into three stages: first 

hand detection is discussed, then gesture classification is covered, and finally, 

mapping of gestures to software is performed. In this chapter, the underlying 

theoretical concepts are explained, which will enable the reader to relate with the 

forthcoming matter.  

 

2.1 Object Detection using HAAR Cascade Classifiers 

The first stage of the proposed approach consists of hand detection from video 

feed. It is pointed out to the reader that is essentially a binary classification problem. 

Most of the work in the field of object detection is based on the seminal work of Paul 

Viola and Michael Jones [Ref. No.]. In [Ref. No.], an algorithm to achieve robust, 

real-time detection is explored. The most important advantage that HAAR Cascade 

classifiers based on Viola-Jones algorithms have is their speed of detection. The 

Viola-Jones algorithm has four features of interest:  

 

a. HAAR features 

Like previous approaches [Ref. Papageorgiou], Viola-Jones‟ approach 

uses HAAR features. HAAR features are computed by sliding a window 

with each HAAR-like feature kernel over the image. The value of the 

feature is calculated as the difference of the sum of the pixel values under 

the regions defined by the kernel. For example, in Fig. 2.1, the HAAR 

feature is calculated as: 

 

      |∑              
      

  ∑              
      

|     

 

Simple HAAR-features were used: two-rectangle features, three-rectangle 

and four-rectangle features, to compute a set features for the frame. 

However, for a standard window of 24x24, the set of features is 

overcomplete, with over 1.8x10
5
 features. 
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b. Creating Integral Image 

One of the main contributions of [Ref. No.] is the concept of Integral 

Images. To compute HAAR features, it is required to calculate the sum of 

pixel values very frequently. To speed up this process, Viola-Jones 

framework introduced the concept of integral images, which are summed 

area tables. For each pixel value (x, y), the sum of all pixel values above 

and to the left of (x, y) are calculated and stored in a look-up table. This 

look-up table is therefore a intermediate representation of the original 

image This intermediate representation of an image enables calculation of 

HAAR features in constant time. Any time a sum over an area is required, 

it can be done in constant time over a single pass over the image as : 

                                                  

                                            

Where I(x, y) is the value of the sum of all pixels above and left of the 

pixel at (x, y), and i(x, y) is the pixel value. Refer Fig. 2.2 for the 

explanation of (2) and (3) 

Fig. 2.1 : Example of HAAR-like feature for edge 

detection 
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c. Adaptive boost Training 

Another significant contribution of [Ref. No.] is the algorithm for building 

a classifier by choosing a small set of significant features using Adaboost 

[Adaerf]. As was pointed out earlier, the number of HAAR features 

calculated is over complete, the learning algorithm must sift out a large 

number of unimportant features and select a small set of important ones. 

This is done by having a weak classifier algorithm, such that it can only 

use a single feature. This weak classifier is only just better than a random 

guess. However, on many iterations, a new feature, and hence a new weak 

classifier is chosen. The final classifier, the boosted classifier, is a 

weighted combination of all such weak classifiers. After each iteration in 

the training process, a weight equal to the error or loss on the current data 

item is assigned to the data item. Finally, the boosted classifier is created 

as the weighted sum of the above classifiers. 

 

d. Cascading Classifiers 

To increase the speed of classification, a method is developed by 

combining a cascade of classifiers, in which each stage uses successively 

more complex classifiers. The detector prepared by Viola and Jones had 38 

such stages. Each stage has more features than the previous stage. If a 

sample passes this stage, it is passed on to the next stage. Thus, if a sample 

passes all stages, it is classified as containing a positive. It is therefore 

noted that each stage eliminates false positives. Thus, a good stage should 

have 100% true positives and some false positives. This cascade of 

Fig. 2.2: Calculation of Integral Images 
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classifiers eliminates obvious negatives at early stages, and only retains 

more promising regions that pass earlier stages for more complex 

computation. 

 

In our proposed approach, the concept of object detection was modified to 

detect hands from videos. For this purpose, a HAAR cascade classifier was trained 

using several thousand images. This is discussed in detail in Chapter 3. The resultant 

classifier was used to get a bounding box from the image, marking the position of the 

hand in the image (which is actually a video frame). This bounding box is then passed 

on to the next module in the pipeline, which performs gesture recognition. 

 

2.2 Image Recognition and Convolutional Neural Networks 

The second stage of the proposed approach is the recognition of a gesture from 

the image. At this stage, the bounding box is obtained from the output of the object 

detection module described earlier. In this stage, this bounding box is passed on to a 

image classifier, which recognizes it as one of four valid gestures, or as an invalid 

gesture.  

One of the most revolutionary ideas in image classification is due to Alex 

Krizhevsky et al. [17]. While most existing approaches to image classification relied 

on traditional machine learning techniques, they fail to encompass the complexity and 

variability of objects in realistic settings. The novelty of [17] was in that a 

Convolutional Neural Network (CNN) was used to classify images from the ILSVRC-

2012 dataset. An error rate of 15.3% was achieved using a CNN by Krizhevsky. A 

Convolutional Neural Network is essentially a few convolutional layers in front of an 

Artificial Neuron (ANN). The design of a CNN generally consists of the following 

three stages: 

1. Convolutional Layer: Convolutional Layers apply some kind of 

convolutional operation to the image and passes the result to the next 

layer. Each convolutional layer is like a filter applied to the input. The 

convolution operation is explained in Fig 2.3. A small kernel can be 

thought to be convolved over the entire image, producing an activation 

map. For each position of the kernel over the image, the pixel values and 

the weights of the kernel are multiplied element-wise and added. It is also 
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to be noted that the depth of the filter should be the same as the depth of 

the image, so if the input image has dimensions 32x32x3 for a 3-channel 

(RGB) image, the kernel also has to have depth 3. After the entire 

convolutional operation, an array with depth 1 is obtained. This is called 

the feature map for one filter. Stacking all the activation maps for the 

entire depth of the input using various filters forms the output of the 

convolutional layer. 

 

 

2. Pooling Layer: Most often, a convolutional layer is followed by a pooling 

layer. In this layer, down-sampling is performed. The most common form 

of pooling is max pooling. In max-pooling, the image is partitioned into 

non-overlapping rectangles of size 2, and the maximum of the four pixel 

values is taken. Another common technique of pooling is L2-pooling. L2 

pooling is similar to max-pooling except that instead of taking the 

maximum value from the region of pixels, the square root of the sum of 

squares of the pixel values is taken. The purpose, however, is the same as 

max-pooling: To get a representative value for that region over which it is 

applied, to reduce the feature space. The pooling layer serves to reduce the 

size of the output of the convolutional layer, thereby reducing the number 

of parameters. This reduces the computation and also helps prevent 

overfitting. Pooling also provides translational invariance []. Pooling is 

explained in Fig 2.4. 

Fig 2.3: Convolution with stride size 1. Each time, the kernel is 

shifted one pixel 
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3. Fully Connected Layer(s): This layer is essentially a hidden layer of the 

ANN, which performs classification from the features selected from the 

convolutional layers. This layer takes an input volume which is passed to it 

by the preceding layer (pooling or ReLU/Softmax) and outputs a k-

dimensional vector, for a k-class problem. In this part of the CNN, each 

unit or neuron is connected to every other neuron in the next and previous 

layer. It is pointed out that this is in contrast to the Convolutional Layers, 

where neurons are sparsely connected to each other. Activations are 

calculated by matrix multiplication of pixel values and weights. The final 

Fully Connected layer output the scores/predictions for each class.  

 

Initially the network is set up with random weights (and biases). When the 

input images are fed through the CNN, it predicts a class for each of the images. The 

prediction is compared against the actual label, and a loss is calculated over the 

images. Several loss functions are used commonly, prominently SVM loss [ref], Cross 

Entropy Loss [ref] Mean Squared Error Loss[ref]. They are described as: 

                         ∑              
   

    

          

                            
    ∑   

 

                      

Where in each case, xi is the input pixel-array and yi is the label that specifies 

the index of the correct class, and the hypothesis function s = h(xi, W), and Δ is a 

hyperparameter. It is noted that the choice of the loss function is not fixed but is 

chosen by the author according to his problem. 

Fig 2.4: Max-pooling with a 2x2 kernel and stride of 2 



13 

 

 This preliminary process of passing training data to get predictions and 

comparing is termed as a forward pass over the network. Next, a backward pass is 

performed over the network, in order to calculate the gradients over each layer 

progressively.  

The gradient is calculated such that that the overall loss function is minimized. 

The weights are then updated so as to minimize the objective function (loss). One of 

the popular methods in which this is done is the Gradient Descent algorithm and its 

many forms. (Online, Stochastic, etc.). In particular, for the i-th epoch (one entire 

forward and backward pass is called an epoch), gradient descent updates the weight of 

the j-th layer as: 

  
     

       
  

               

where   is the total loss, α is the learning rate, and  
  

      denotes the 

gradient of the loss function   w.r.t. the weights of the current layer j, evaluated as 

per (4), (5). 

The learning rate is an important hyperparameter, as it controls the time taken 

for training as well as the accuracy of the gradient descent algorithm. When the 

learning rate is small, the gradient descent makes a smaller step in the direction of the 

gradient, and as a result it takes time to converge to the minimum. However, when the 

learning rate is larger, the algorithm takes larger steps in the direction of the gradient. 

While this generally results in faster convergence, taking larger steps may cause the 

algorithm to overshoot the minimum and the loss may not decrease with more 

iterations, thus giving inaccurate results. Also, it is noteworthy that while from a 

theoretical perspective, the Loss is calculated over the entire dataset, in practice this is 

hardly the case. This is because evaluating the loss over a dataset consisting a million 

or more images consumes far too much computational resources than is practical. 

Therefore, some variation of Gradient Descent is commonly employed in which the 

loss over a small „batch‟ of training examples is evaluated. The batch size is also a 

hyperparameter in such cases. If one example is used at a time, the process is called 

on-line gradient descent, because weights are updated constantly after each training 

example has been processed. 

 It is pointed out that in the problem of image classification, there arise 

problems due to rotational variance, translational variance, scaling, illumination 

variations. In a CNN, these problems are handled very robustly if there is adequate 
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training data available. This is due to the feature extraction performed in the 

convolutional layers enable intermediate representations that capture the above 

mentioned variances to a large extent. 

In our proposed approach, image classification is used to classify the bounding 

box obtained from the previous section into a gesture. It is to be remembered that 

from the result of the previous section, a bounding box is obtained which contains a 

hand performing a gesture. For classification, a Convolutional Neural Network is 

designed, consisting of five (5) Convolutional Layers and two (2) Fully Connected 

Layers. This is described in further detail in Chapter X. This CNN was trained with 

images of gesturers performing four different gestures, namely, the fist closed, the 

index finger raised, the first two fingers raised in a V-shape, and the thumb raised. 

The output of the hand detection module is fed into the trained model. The CNN 

predicts a gesture for the bounding box that is fed to it, and this gesture is passed on to 

the next module, which performs some software action based on the gesture. 
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3. PROPOSED WORKFLOW 
 

 A method for interacting with software using static gestures from video feed is 

proposed, requiring minimal hardware, but achieving high accuracy comparable to 

state-of-the-art algorithms. Since past works related to this involved hardware in 

extraction of Gestures , we relied on Deep Learning based Methods which 

outperforms the existing methods simply because Neural Networks can learn Features 

which are invisible to Human Eye and Hardware sensors . The proposed Model 

processes 15 Frame per second ( 15 fps) .  The proposed approach is broken into three 

stages: first hand detection is discussed, then gesture classification is covered, and 

finally, mapping of gestures to software is discussed.  The Overall Architecture of the 

Proposed Method is Given in Fig 3.0  

 

 

Fig 3.0: Illustrates the Architecture of Proposed Method 
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3.1 Hand Object Detection using HAAR Cascade Classifiers 

Since the important part of this literature is hand gestures, so effective way of 

detecting hand object is of paramount importance. There are many existing methods 

of detecting Hand from a live video stream as discussed in previous works but having 

a dedicated classifier for hand object is crucial for gesture recognition. The methods 

which involves skin color matching and segmentation is not robust to skin color of 

various races. Here deep learning outperforms this approach and makes this process 

of hand object detection free from background, orientation and skin colour.  

 For creating a dedicated hand classifier, we selected HAAR Classifier which 

uses HAAR like Features which are discussed in Section 2.1(a). Using this classifier, 

we can detect hand images from live video stream. So, input in this stage is the 

temporal frames from Live Video Stream captured using standard Laptop Web 

Camera. These temporal frames are fed directly to the Trained Hand Classifier. The 

Training of the classifier is explained in details in next Chapter. In this step, these 

temporal frame images are preprocessed by gray scaling them and resizing them to 

100 x 100 size. The Trained Object Detector scans the image in a sliding window 

fashion to return Confidence Score and the Bounding Box coordinates of the Hand 

Object as Displayed in Fig 3.1. The detected box of Hand Object is padded with a 

fixed threshold and cropped out of the Temporal Frame. This will be the input to the 

Next step. 

 

 

Fig 3.1: Open Hand detection Architecture using HAAR cascades 
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3.2 Gesture Recognition using Convolutional Neural Network 

Hand gesture detection are the building block for connecting Software 

Applications. So, efficacy of this step is very important for our proposed method. In 

this work we are detecting 4 classes i.e. V-shape, Index, Thumb , Fist and Blank 

Image which represents No Class / No Gestures. We trained our 6-layered 

Convolutional Neural Network for 4 classes of gestures. The details of training the 

CNN is explained  later in section 4. The Temporal Frames which are passed from the 

last stage of HAAR Classifier is the input to this stage . Here the Image contains the 

Hand Region cropped out of Original Frame , but we cannot pass this information 

directly to the Trained CNN Model because it contains background noise .There 

exists 2 problems which are Addressed Here : (a) Detection of Hand in Noisy 

Background (b) Detection of Hand in Plain Background.The algorithm to solve the 

above mentioned issues are discussed below. 

 To eliminate the background Noise , we implemented a colorspace based Skin 

Segmentation on Detected Hand Frame to select only the Skin Region . The 

colorspace used is Hue Saturation Value (HSV) Model since HSV color space is more 

intuitive to how people experience color than the RGB color space. As hue (H) varies 

from 0 to 1.0, the corresponding colors vary from red, through yellow, green, cyan, 

blue, and magenta, back to red. As saturation(S) varies from 0 to 1.0, the 

corresponding colors (hues) vary from unsaturated (shades of gray) to fully saturated 

(no white component). As value (V), or brightness, varies from 0 to 1.0, the 

corresponding colors become increasingly brighter. The input Hand Detected Image is 

first converted into HSV Colorspace from RGB Colorspace as shown in Fig 3.2(b) 

.This HSV model filters the skin pixels from the HSV Image. This filtered image is 

then morphologically eroded and dilated to remove Noise and then Morphologically 

Opened. This Opening of Mask removes unstable and scattered pixels from 

background which does not represent skin pixels.
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After this step the Skin Filtered Hand Image is Masked Out from the Original 

Temporal Frame as shown in Fig 3.2(c) . 

The image is again Preprocessed to detect the Hand in Plain Background as 

shown in Fig 3.2(d) which is discussed in Details in Section 4.6 and then passed on to 

The Deep-CNN Model for Classification of Gestures . The Softmax Layer of this 

Neural Network Model predicts the Gesture in the Input Temporal Frame. The Output 

of the Softmax Layer CNN Model is converted to One –Hot Array and then 

Compared with Labelled Gestures to assign a Gesture Label to that Particular Input 

Temporal Frame which is useful during Mapping of Software Applications . 

Whenever the Video is Empty the Default Label assigned to the Frame is No-Gesture 

Label . The Code of this is available in Repository [14]. 

The Architecture of the CNN Model starting from Input Hand Image to Final 

Labelling of the Gesture is Illustrated in the Diagram as shown in Fig 3.2.  

 

 (a)  Detected Hand             (b) HSV Format 

(c)  Masked Hand           (d) Threshold Image 

Fig 3.2 : Represents step by step process of Eliminating the background noise by 

preprocessing before input to Deep-CNN 
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3.3 Mapping of  Software  Application to the Labelled Gestures 

 This is an important Contribution  since most of the Existing Models are used either 

in hand-held devices or Arduino Based Devices by taking help of Foreign Sensors 

besides the usage of Deep Learning Models. But in this literature we proposed a 

interesting Mapping of Software Application to the Gestures identified without the 

usage of any sensors or Hardware and yet it reaches a desirable amount of Accuracy 

to be commercialized . This step is to make sure Human Gestures can connect and 

control Desktop Applications . 

 In this step , we take the Gesture Labelled Temporal Frame and we calculate 

the Percentage generated by Softmax Layer of the Deep-CNN Model. Since, we are 

dealing with Computer Applications , the accuracy must be high enough to control the 

Applications with ease. For this purpose , we deviced an Algorithm for Mapping 

Gestures to a Software Application which is illustrated in Fig …. .  

 

 

Fig 3.2 : Illustrates  the working principle of Gesture Recognition 
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1. 

Algorithm 

 

Input ← Video Stream with Labelled Temporal Frames 

2. X-Bins ← [ 0 , 0.2 , 0.4 , 0.6 , 0.8 , 1.0 ] 

3. Y-Bins ← [ „No-Gesture‟ , „Thumb‟ , „Fist‟ , „V-Shape‟ , „Index‟] 

4. Plot Bar_Graph ( X-Bins , Y-Bins ) 

5. Label_count ← [ ] , freq ← 0 # (No Gesture has label 0 ) 

6. for each bars in Bar_Graph do: 

7.    Max_Score ← max( Softmax Probabilities ) 

8.    If Max_Score >= 0.7 

9.         Timer.sleep(2 , callback ) and Timer.start() 

10.         Label_count=Label_count.append( index[Y-Bins(bars) ]) 

11.    function callback() { freq = mode( Label_count )  

12.   If freq >0 and freq = = index(Y-Bins(bars))  

13.        Fire Respective Applications 

14.                else 

15.                            Abort and  Label_count= [ ] 

  

If a labelled gesture is found in the Temporal Frame , it does not invoke a software 

immediately , instead , it checks some parameters before invoking the software . As 

per the above algorithm , at first a Bar Plot is obtained for each Temporal Frame in 

which Y-axis contains all the Labels and X-Axis contains all the Probability of 

Detection ranging from 0 to 1 i.e  0% to 100% . For each of these frames we select the 

Gesture only if the Detection rate is in excess of 70 % . But , the application is not 

invoked immediately , instead it waits for 2 seconds and scans the Gesture Label 

during this period and the most frequent gesture between this period is noted down . 

Then the software corresponding to the frequent gesture in this interval of 2 seconds is 

invoked .  

Table 3.1 : Algorithm for converting gesture to software action 
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 For this literature , our choice of Application is VLC Media Player , since it is 

an open-source Media Player currently available in the market and we can easily 

tweak the settings using code . The table below illustrates the gesture mapping with 

softwares  

 

Gesture Action 

Thumb Opens VLC Media Player from Menu 

V-Shape Pauses the Current Video if Running 

Fist Plays a Rock Video Song from Memory 

Index Stops Video and Closes VLC Media Player  

No-Gesture Do Nothing 

 

As of Now , we have fixed set of gestures but we can extend this to many gestures 

and map different kinds of softwares in the future . 

 

 

Fig 3.3 : Illustrates  the working principle of Software Action Mapping to Gestures 

Table 3.2 : Algorithm for converting gesture to software action 
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4. EXPERIMENTATION AND RESULTS 
 

As mentioned previously, for each of the stages of hand detection and gesture 

classification, models were trained using data collected by the authors. In this chapter, 

the methods of collection and preparation of datasets for each stage is described. 

Furthermore, the training performed on the dataset in order to achieve hand detection 

and gesture classification is also described. 

 

4.1 Collection of raw data for creating images 

Five (5) volunteers were asked to perform each of the gestures for thirty (30) 

seconds. Video footage of these were captured, and from the video footage, frames 

were extracted to form images for training both of the models, hand detection as well 

as gesture classification 

 

4.2 Preparation of dataset for HAAR Classifier 

For preparation of data for training the HAAR classifier, from the entire 

collection of images, three (3) images of each gesture were taken. In addition, four (4) 

images of the open hand (i.e., palm) were taken to increase variations. Therefore, in 

total sixteen (16) images were taken as positives. Each of these images were 

converted to grayscale and resized to various sizes, described below, as a parameter. 

The negatives were collected from [6] , which is a database of images, which 

are “organized according to the WordNet hierarchy (currently only the nouns), in 

which each node of the hierarchy is depicted by hundreds and thousands of images.” 

[6]. The various synets from which the images were collected are: room, house, 

people. This is based on the assumption that interaction with computers is likely to 

happen in an indoor environment, so the background is likely to contain rooms, and 

people. In total, Like the positive images, these images were then converted from 

RGB to grayscale and resized down from their original size to 100x100 pixels. 

Next, each of the positive images were superimposed on the negative images, 

to create the training images. For this, the opencv_createsamples utility provided by 

OpenCV 3.1.0 was used. The opencv_createsamples utility takes an image, and super 

imposes that image on a certain number of other images, and produces a new set of 

superimposed images, and a log. In this process, the image is superimposed on 
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random locations on the base image and is rotated by random angles. The limit of 

these rotations, the number of superimposed images to be created can be specified. 

The parameters used by the authors to create samples are explained in Table 4.1. The 

interpretations of the parameters may be found in [7]. It is to be noted that this entire 

process was repeated for each positive image 

 

Table 4.1 : Parameters used for generating samples 

Parameter Interpretation Value 

maxxangle Maximum rotation angle in x-direction, in 

radians 

0.5 

maxyangle Maximum rotation angle in y-direction, in 

radians 

0.5 

maxzangle Maximum rotation angle in z-direction, in 

radians 

0.5 

maxidev Maximum intensity deviation of foreground 40 

h Height of sample in pixels 20 

w Width of sample in pixels 200 

num Number of sample to generate 500 (each) 

 

Following the process described above, eight thousand (8000) superimposed 

images were created. The images were then compiled into a “.vec” file as required by 

OpenCV 3.1.0. The “.vec” file is a binary format containing the images. The 

opencv_createsamples utility not only records the position of the superimposed 

images in annotation files, but also adds the coordinates of the superimposed images 

to the file name itself. This is explained in Fig 4.2. Accordingly, for the 8000 images 

generated, each image had the coordinated of the positive hand in the file name, and 

this served as a label for future training processes. This prepared dataset is available at 

[16].  
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4.3 Training a HAAR Cascade Classifier for hand detection 

The next step involved the training of the boosted cascade classifier from the 

from the “.vec” file and the dataset described in the previous section. For this purpose, 

the utility program opencv_traincascade described in [8] was used. At this point it is 

worthwhile to point out that several window sizes of positives were used: 20pixels, 

30pixels, 40 pixels, and 50 pixels. Moreover, several classifiers were trained for 

several stages. This was done to conduct a comparative study of the effect of window 

size, and number of stages on classification accuracy. The opencv_traincascade 

command can be supplied with various flags and options to control type of features 

(HAAR or LBP), the boosting algorithm, types of HAAR features. The various 

parameters, their interpretations are explained in Table 4.2 

 

Table 4.2 - Parameters used for Training Classifier 

Parameters Interpretation Value Used 

numPos Number of positive samples to be used in each 

stage 

6000 

numNeg Number of negative samples to be used in each 

stage 

10000 

numStages Number of cascade stages to be trained Varied from 

10-20 

bt Boosting Algorithm: DAB/RAB/GAB GAB (Gentle 

AdaBoost) 

minHitRate Minimum desired hit-rate for each stage of 

classification. 

0.995 

maxFalseAlarm 

Rate 

Maximum permissible false alarm rate for each 

stage of classification. 

0.05 

Mode Type of HAAR features to use for training: 

BASIC/CORE/ALL 

BASIC (only 

upright 

features) 
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4.4 Testing and evaluation of Cascade Classifier 

Using the method described in the preceding section, several classifiers were 

trained. In this section, a comparative study of the classifiers is drawn. As mentioned 

in Sections 4.1 and 4.2, various classifiers were trained for various values of: 

a. Window Size: The size of the positive sample (square, in pixels). 

Window sizes of 20, 30, 40, and 50 were used. 

b. Number of Stages: Number of stages for which the classifier was 

trained. Classifiers were trained for 10, 12, 15, 20 stages. 

For testing purposes, a test dataset was generated from positive samples not 

used for training the classifier. These positive samples were superimposed upon the 

negatives in the exact same method described in Section 4.1. The total number of 

superimposed images used in the test dataset was five hundred (500), each with one 

positive sample in it. For detection of a positive from a image, python‟s OpenCV 

implementation provides with a method called detectMultiscale(). For details, the 

reader is requested to peruse through [9]. This method takes an image, in this case one 

image from the test set, a cascade classifier, and some parameters, and returns the list 

of coordinates of predicted locations of positives. The parameters greatly affect the 

detection accuracy of the classifier. Therefore, these parameters were varied one at a 

time, and the effects on performance were observed. The performance metric chosen, 

was accuracy, as the dataset was not unfairly skewed towards positives or negatives. 

We define accuracy as the number of true positives detected by the algorithm to the 

number of positives in the dataset. The parameters varied are explained in Table 4.3. 

 

 

 

 

 

 

 

 

 

 

 



26 

 

Table 4.3 : Parameters used for Detectimg Objects 

Parameter Interpretation Range of Values 

Scale Factor At each stage, the image 

is reduced by some factor, 

and passed to the next 

stage (more features). 

This is the scale factor. 

[1.01, 1.02, …, 2.20] 

Minimum Neighbours The least number of 

neighbours that a detected 

object must have in order 

to be retained in the next 

stage 

[1, 2, …, 50] 

Window Size Size of positive sample to 

be detected. 

[20, 30, 40, 50] 

Number of Stages Number of stages for 

which classifier was 

trained 

10, 12, 15, 20 

 

 

To further explain the effects of Scale Factor, Refer to Fig 4.1 and 4.2. 

In Fig 4.1, the scale factor value = 1, and in 4.5, value = 10.  It is to be noted 

that there is a stark difference in the number of false positives detected by the 

classifier. When minNeighbours = 1, just 1 neighbour is enough for the 

algorithm detectMultiScale to pass on the region as a positive, and it is passed 

on to subsequent stages. However, when minNeighbours = 10, a much more 

stringent bound is placed, because 10 such regions must be identified before 

the region can be classified as positive. As a result, many of the false positives 

are eliminated through the stages and only promising examples are passed on. 

Consequently, a much better result is obtained.  
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Finally, the algorithm used to calculate accuracy on the test-set described 

above is explained in Table 4.4. For testing each parameter in Table 4.3, each of the 

parameter was varied, keeping the others constant, and accuracy calculated on various 

values of the parameter, per Table 4.3. The corresponding plots generated in Fig 4.3 

through 4.5. 

Fig. 4.1: Hand detection with minNeighbours = 1 

Fig. 4.2: Hand detection with minNeighbours = 10 
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1. size ← 500 

2. params ← scale, neighbours, stages, window size 

3. vals ← range of values (refer Fig 4.3) 

4. load cascade file 

5. for each val in vals do: 

6. count ← 0 

7. for each image in test-set do: 

8. detectMultiScale(image, params) 

9. get predicted region for img 

10. compare predicted regions and labels (in image name) 

11.  if predicted region covers ≥ 70% of actual region, count it as correct 

12. accuracy ← correct predictions / size 

13. plot accuracy vs. params. 

 

 

 
Fig. 4.3: Plot of accuracy vs. Scale factor for both window sizes 20px and 30px 

Table. 4.4: Evaluation and graph-plotting algorithm 
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From the above results, it was clear that the window size of 20x20 was the 

most promising choice, so it was used for all further work. An additional advantage of 

using smaller window size was that the number of false positives is reduced 

substantially, as the window size decreased. For the values of minimum neighbours 

Fig. 4.4: Plot of accuracy vs. min neighbours for both window sizes 20px and 30px 

Fig. 4.5: Plot of hits vs. window sizes for different window sizes 
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and scale factor, values in the range 1-9 and 1.0-1.1 respectively were used. Also, as 

the window size increases, so does the feature space, and the time taken and resources 

consumed to train the classifier rises significantly. 

 

4.5 Data augmentation for Convolutional Neural Network 

As mentioned in Section 4.1, frames extracted from videos of volunteers 

performing the four gestures were used as training images. For training the CNN, 

approximately four hundred (400) images of each gesture. These were then manually 

labelled, with the file names containing the label, and an indexing number for general 

use. To the above set of images, another four hundred (400) images containing no 

gestures were added, following the [10]. 

This dataset was augmented to increase variety [11] and quantity, and also to 

take into account various lighting conditions, positioning and various spatial 

orientation of samples which were not present in the original training data, but could 

well be present in the real data. To augment the data, the following operations were 

performed: (Also refer to Fig 4.10) 

a. Linear translation: Randomly selected images were translated by varying 

random amounts in the range [-20, +20] pixels on the x-axis, or y-axis, or 

both. 

b. Rotation: Randomly selected images were rotated in the range [-20, +20] 

degrees, the rotation center was randomly selected 

c. Illumination: The intensity of some randomly selected images were varied 

by [-40%, 40%] 

d. Noise: Some randomly selected images hand Gaussian noise injected into 

them. 

After the data augmentation processes described above, the size of the dataset was 

increased to ten thousand (10,000) images.  

 

Fig. 4.6: Rotation, Translation, and intensity deviations on images 
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4.6 Data pre-processing for Convolutional Neural Network 

To reduce the feature space, some image pre-processing was performed on the 

images. Another reason behind performing such image processing operations was to 

remove the background from the images, keeping only the basic features of the hand. 

Accordingly, each of the images after the processing in Section 4.4, was subject to the 

following operations: 

a. Cropped to square aspect ratio: Each of the images was cropped to a 

square portion to remove any inconsistency that may arise because of 

different sizes of images. 

b. Converted to grayscale: Each image was originally a 3 channel (RGB) 

image, was converted to a 1 channel grayscale image.to reduce 

convolution operations and no of activation maps. 

c. Gaussian Blur: Some portions of the images have no features at all, (i.e., 

totally white), whereas some are having the hand portions. Thus, the 

values of the features vary diversely. Gaussian Blur can be thought of as a 

mean normalization over all pixel values. In addition, Gaussian Blur also 

reduces noise and detail in images. 

d. Adaptive Thresholding: The principal purpose of thresholding is to remove 

the background from the image. For every pixel if it falls within a range, 

the pixel value is retained, otherwise it is replaced to remove it. 

e. Erosion and dilation: Erosion is applied to remove unnecessary detail and 

noise from the image. However, erosion also thins boundary of the image, 

by removing pixels from the image boundaries. To counteract this, the 

image is dilated, where the boundaries are again regenerated, and any gaps 

created by erosion are bridged. 

f. Median Blur: The above operations unfortunately, introduce unnecessary 

specks and blemishes into the image, which are removed by median blur. 

 

Refer to Fig 4.11 for a clearer idea. In Fig 4.11, one image from the dataset 

has been chosen at random and the results of operations a. through f. are displayed. 
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Thus, each image in the augmented data set is subject to the above processing, 

and the images such as g. are used for training the Convolutional Neural Network. 

Before this is done, however, each image is also resized to 64x64 pixels. This is to 

reduce the processing time. Most state-of-the art algorithms use 32x32 pixels, but 

since the image has been stripped off most of its features, a larger size is chosen for 

our purposes. 

 

 

 

 

 

Fig. 4.7: Grayscaling, Gaussian Blur, Thresholding, Erosion, Dilation 

and Median Blur 
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4.7 Architecture of Convolutional Neural Network and Training 

The architecture of the CNN used to classify gestures was partly influenced by 

a literature survey, as described in Chapter 1, and partly as a result of experimentation 

with different architectures. The final architecture is as follows: 

 

 

No. Layer Kernel Size Feature 

Map/Stride 

Activation Dropout 

1. Convolutional 5x5 32 ReLU -- 

 Normalisation -- -- Local Response -- 

2. Convolutional 5x5 64 ReLU -- 

 Normalisation -- -- Local Response -- 

 Max Pooling 2x2 2 -- -- 

3. Convolutional 5x5 128 ReLU -- 

 Max Pooling 2x2 2 -- -- 

 Normalisation -- -- Local Response -- 

4. Fully Connected -- 1024 ReLU 0.5 

5. Fully Connected -- 512 ReLU 0.5 

6. Softmax -- 5 Softmax -- 

 

Various other hyper-parameters used were: 

a. Learning Rate = 1.0x10
-3

 

b. Image Size = 64x64 pixels 

c. Number of epochs = 50 

d. Loss function in Classification Layer: Categorical Cross-Entropy [12] 

e. Train:Validation Split: 4:1 

f. Optimiser: Adam 

g. Batch Size = 300 

h. Steps Per Epoch = 50 

 

Figure 4.8 shows the architecture of the CNN as depicted by Tensorboard [13]. 

 

Fig. 4.5: Architecture of CNN 
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The following Architecture was Trained using 10,000 Images as Mentioned in 

previous Section. The Model was trained using Batch Size of 300 , with Number of 

Epochs as 50 and Steps per Epoch was set to 50 . The Time taken to Train the above 

mentioned Architecture was 4-5 Hours . The Model was trained on a Intel Core i5 

Processor @ 2.3 GHz with 8 GB DDR3 Ram and 2GB Dedicated NVIDIA 

GEFORCE GPU 940M Graphics Processor. The Training was continued until the 

Validation and Total Loss got stagnant.  

 

 

 

 

 

Fig. 4.8: Architecture of CNN as a computational graph 
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4.8 Testing and evaluation of Convolutional Neural Network 

In this section, a comparative study is drawn on the CNN showing the effects 

of reducing certain layers, and that of number of epochs on classification accuracy. 

For this purpose, a new test data set was created with images previously not used. 

These images were treated in the exact same way, described in Section 4.5. Five 

hundred (500) total images were used to create a test data set. The following 

performance metrics were used:[13] 

a. Accuracy: The ratio of correctly classified samples to the actual number of 

samples 

b. Precision: 
              

                              
 

c. Recall: 
              

                              
 

d. F1-Score:   (
                

                
) 

 

To calculate accuracy, a script as run 5 times over the test set and each time, 

the accuracy was calculated over each run, and the mean accuracy reported.                             

     

b a 

c 

Fig. 4.9: Training and Validation Accuracy, comparison with 1 and 3 

convolutional layers 
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a. Training accuracy vs. iterations: Blue: 10 epochs, Red: 20 

epochs 

b. Validation Accuracy vs. iterations: Blue: 10 epochs, Red: 20 

epochs 

Fig. 4.10: Training and Validation accuracy 10, and 20 epochs 

Fig 4.9 shows a comparison between a CNN with just 1 convolutional Layer 

versus the architecture described by Table 4.5. Clearly the addition of more 

convolutional layers contributes to a marked increase in training accuracy. 

Figure 4.10 shows a comparison between training accuracy of CNN‟s having 

the same architecture but trained for different epochs (10 and 20). Obviously, a 

classifier trained for 10 epochs had better performance than one trained for 10 epochs. 

 

Therefore, the final classifier that was chosen was the architecture in Fig 4.8, 

and it was trained for 20 epochs using the data set previously explained. The results 

are shown in Table. 4.7. 
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Table 4.7: Performance Report 

 Precision Recall F1-score Support 

1. 0.00 0.00 0.00 103 

2. 0.99 1.00 1.00 107 

3. 0.83 0.07 0.13 73 

4. 0.31 0.81 0.45 94 

5. 1.00 1.00 1.00 123 

Average 0.64 0.62 0.56 500 

Average Accuracy after 5 runs = 0.712 

 

The proposed architecture was also compared against standard small sized 

Models given in the literature of Orlando et al. [15] . We considered the Architectures 

Arq1 , Arq3 as  given in the Paper[15] which are described below .  

 

Table 4.8: Details of Architectures for Comparison 

Arq 1 Arq 3 

Type Kernel Type Kernel 

Convolution 10 x 10 Convolution 36 x 36 

Max Pooling 8 x 8 Max Pooling 5 x 5 

Convolution 5 x 5 Convolution 7 x 7 

Max Pooling 10 x 10 Fully Connected --- 

Fully Connected --- Softmax 4 

Softmax 4   

 

The Models are evaluated on the basis of 4 classes, since these models were 

originally designed for detection of 3 classes namely: Open Hand , Close Hand and 

No Class , but we used all the 4 Gestures we used to find the Efficacy of this Model .  
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The training of the Above Models was done using same Dataset which was 

used for our Model. We ran the Models till 20 Epochs. After Training the Models, the 

Models were tested against Live Video Stream of Web Camera, which acted as the 

Test Dataset. The Test Video was run for 10 Seconds i.e. 3000 Frames since Real 

Time Web Cameras are mostly 30 fps. Hence the architecture of Simulation was 

similar to all the 3 models. 

We calculated the Accuracy of the Models using the Metrics mentioned in this 

section. Since we were dealing with Software, our main concern was Accuracy. 

So we found out the Accuracy Metric of the Models Arq1, Arq3 and Proposed 

Model which is illustrated in Table 4.9 

 

Table 4.9: Comparative Study on Performance of Architectures 

Architecture No of Frames Epochs Accuracy 

Proposed Method 3000 20 71.24 % 

Arq 1 3000 20 32.66 % 

Arq 3 3000 20 61.35 % 

 

The comparative Study of the Architectures shows that the Proposed Method 

works best for 5 gestures with a Mixture of Open Hand, Close Hand and No Gesture , 

However Arq3 performs decently to obtain 2
nd

 best spot in terms of Accuracy inspite 

of having the Smallest Architecture among the 3 used whereas  Arq1 performed 

Poorly mainly because of the Kernel used and less number of Feature Maps , hence it 

could not extract enough Features to Distinguish one gesture from another .  
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5. CONCLUSION  AND  FUTURE  WORK 

 
5.1 Conclusion 

We have built the software which can detect four static hand gestures from a video 

feed, and take actions for a specific application, vlc media player. A detected closed 

fist causes the player to play rock-music categorized videos, thumbs-up causes the 

application to start shaped gesture puts the player on pause and show of an index from 

the user closes the vlc media player. Importantly, the application is for a single user at 

a time. 

 

5.2 Future Work 

Our work has been limited only to static gestures. However, it can be extended to 

dynamic gestures which can easily be fit in a two-dimensional frame by looking for 

consecutive frames from a video feed instead of only one frame before labeling the 

gesture of the detected hand in the frame. For example, a swipe-left gesture can be 

detected by checking for the changing positions of the detected hand (with all five 

open fingers) in closely consecutive frames from right to left. Also, in order minimize 

the presently running window, an index finger moving from top-right to down-left can 

be used. The software can easily confuse this minimize gesture with a show of only 

index finger gesture, and to avoid the such situations, the software should wait for a 

few seconds before taking the action to see if there is a change in the position of the 

hand in the given frame. This Proposed Gesture Detection Model is currently working 

in Approximately 15 fps and since we are also planning on making the software 

available for all the applications available on any device , our future goal is to make 

this model Realtime Interaction with Software .Currently , the software will be 

running for a specific application, like the vlc media player . Also, the gestures will 

perform more generalized actions, like show of index finger will not only close vlc 

media player but any presently running application/s. Speed analysis of the dynamic 

gestures need to be done. If the gesture is performed too fast, it should be discarded, 

because it's likely to be a reflexive action rather than a gesture interaction on behalf of 

the user. Interacting with software using gesture in purely the user's choice and he can 

run/stop the software according to his/her discretion. 
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