
i

Project Report On

Interacting with Software using Gestures

“A dissertation submitted in partial fulfillment of the requirements of Bachelor of

Technology Degree in Computer Science and Engineering of the Maulana Abul

Kalam Azad University of Technology for the year 2017-2018”

Submitted by

Sauradip Nag (10200114044)

Pallab Kumar Ganguly (10200114025)

Swati Ghosh Hazra (10200114056)

Aditya Jain (10200114003)

Under the guidance of

Dr. Kousik Dasgupta
Assistant Professor

Dept of Computer Science & Engineering

Kalyani Govt. Engineering College

Mr. Tamojit Chatterjee
Software Engineer

Indeed

Department of Computer Science and Engineering

Kalyani Government Engineering College
(Affiliated to Maulana Abul Kalam Azad University of Technology, West Bengal)

Kalyani - 741235, Nadia, WB

Department of Computer Science and Engineering

Kalyani Government Engineering College

Phone : +91-033-25821309 (Office), +91-9830040558(Mobile) E-mail: kousik.dasgupta@kgec.edu.in

Certificate of Approval

This is to certify that this report of B. Tech. Final Year project, entitled “Interacting With Software Using

Gestures” is a record of bona-fide work, carried out by Sauradip Nag, Pallab Kumar Ganguly, Swati

Ghosh Hazra and Aditya Jain under my supervision and guidance.

In my opinion, the report in its present form is in partial fulfillment of all the requirements, as specified by

the Kalyani Government Engineering College and as per regulations of the Maulana Abul Kalam Azad

University of Technology. In fact, it has attained the standard, necessary for submission. To the best of my

knowledge, the results embodied in this report, are original in nature and worthy of incorporation in the

present version of the report for B. Tech. programme in Computer Science and Engineering in the year

2017-2018.

Guide / Supervisor

Dr. Kousik Dasgupta

Department of Computer Science and Engineering

Kalyani Government Engineering College

____________________ ____________________________

Examiner(s) Head of the Department

Computer Science and Engineering

 Kalyani Government Engineering College

Scanned by CamScanner

i

ACKNOWLEDGEMENT

First of all, we would like to thank our guides, Mr. Tamojit Chatterjee, and Dr. Kousik

Dasgupta for their constant support and guidance, which have been invaluable

throughout the duration of the project and without whom we would not have been able to

bring this project to fruition.

We also thank our parents and families for their sanguine attitude and encouraging us in

all our endeavors.

We also express our gratitude to all the professors, technical and laboratory staff and

attendants of the Computer Science and Engineering Department, for providing technical

and hardware assistance and for their unwavering commitment to help all students as

much as possible.

Finally, we express our gratitude to Dr. Saurabh Kumar Das, Principal, Kalyani

Government Engineering College, and Prof. Malay Kumar. Pakhira, H.O.D., Department

of Computer Science and Engineering.

Sauradip Nag

Roll: 10200114044

Regn. No. 141020110044

Pallab Kumar Ganguly

Roll: 10200114025

Regn. No. 141020110025

Swati Ghosh Hazra

Roll: 10200114056

Regn. No. 141020110056

Aditya Jain

Roll: 10200114003

Regn. No. 141020110003

ii

Declaration by Authors

This is to declare that this report has been written by me/us. No part of the report is

plagiarized from other sources. All information included from other sources has been

duly acknowledged. I/We aver that if any part of the report is found to be plagiarized,

I/we are shall take full responsibility for it.

……………………………...
SAURADIP NAG

ROLL: 10200114044

……………………………...
PALLAB KUMAR GANGULY

ROLL: 10200114025

……………………………...
SWATI GHOSH HAZRA

ROLL: 10200114056

……………………………....
ADITYA JAIN

ROLL: 10200114003

iii

Abstract

 Gesture recognition is a field in Computer Science which deals with interpreting

gestures performed by humans by the use of mathematical models and algorithms.

Current work in this field comprises of hand-gesture recognition, and emotion

classification from the face. This report presents a method for hand gesture identification

and classification of hand gestures, so that they can be used to interact with software. The

proposed method involves two stages. First, from video feed, samples are extracted, and

the area containing the hand is detected using a HAAR-like cascade classifier. Thereafter,

we use a Convolutional Neural Network to classifier to classify the detected hand region

(which is performing a gesture) into one of four gestures, namely, the closed fist, the

index finger raised, the first two fingers raised in a V-shape, and the thumb raised. The

identified gesture can then be mapped to a software action. In this report we describe in

detail the datasets used to train our models, the methods used to detect the hand region

from the video feed, as well as the design, implementation and working of the

Convolutional Neural Network used to classify the gestures. Finally, we describe the

results of our work and compared them against standard Architectures for judging the

Effectiveness of t Proposed Method.

Keywords: Computer Vision, Deep Learning, Gesture recognition, HAAR

Cascade, Convolutional Neural Network.

iv

CONTENTS

CHAPTER 1 INTRODUCTION 1

1.1 Motivation 1

1.2 Background 3

1.3 Summary of prior works 3

1.4 Summary of present work 5

1.5 Organization of the thesis 6

1.6 Resources used. 6

CHAPTER 2 THEORETICAL BACKGROUND 7

2.1 Hand detection 7

2.2 Gesture Recognition 10

CHAPTER 3 PROPOSED WORKFLOW 15

 3.1 Hand Object Detection using HAAR Cascade Classifiers 16

 3.2 Gesture Recognition using Convolutional Neural Network 17

 3.3 Mapping of Software Applications to Labeled Gesture 19

CHAPTER 4 RESULTS AND EXPERIMENTATION 22

 4.1 Collection of Raw Data for Creating Images 22

 4.2 Preparation of Dataset for HAAR Classifier 22

 4.3 Training a HAAR Cascade Classifier for Hand Detection 24

 4.4 Testing and Evaluation of Cascade Classifier 25

 4.5 Data Augmentation for Convolutional Neural Network 30

 4.6 Data Preprocessing for Convolutional Neural Network 31

 4.7 Architecture of Convolutional Neural Network and Training 33

 4.8 Testing and Evaluation of Convolutional Neural Network 35

CHAPTER 5 CONCLUSION AND FUTURE WORK 39

 5.1 Conclusion 39

 5.2 Future Work 39

v

REFERENCES 40

PLAGIARISM REPORT 42

1

1. INTRODUCTION

 Since the invention of Computers, it slowly became tightly integrated with our

daily lives. And with every passing day, with every new technology, innovation, we

must upgrade ourselves. Nowadays focus has been given to make everything digital

from analog. Hence reliance of Human Beings on Analog Devices must be reduced.

Vision based systems are very popular nowadays and now computer can “see”. Hence

the interaction of Human with the Machines has been quite enriching and user

friendly affair. Computer Vision based systems must ensure that the Working of the

Software is Real Time and there exists no lag, must be accurate and robust to any

environment. In the 20
th

 Century, there has been a huge influx of Man-Machine

Interactions. However, it brings along a complex set of challenges. Researchers are

currently working on such challenging problems. Hence, cost of productions of such

software, controllers, devices are quite high . This is widely used in Image, Gesture,

Speech, and Sign Language Recognition. Just like speech, gestures are a mode of

communication between humans. In fact, some research suggests that human

communication may have evolved from gestures rather than speech. It is therefore

unsurprising that several technologies in the recent past have tried to revolutionize

human-machine interaction (HMI) using gestures.

1.1 Motivation

Ever since the advent of computing tools, there has been a consistent endeavor

to improve on the communication barriers between man and machine. Computers of

the 60‟s had only one mode of interaction between the user and the computer, the

command-line interface. This prevented the computer from achieving the widespread

use it has achieved today, and computers were used only in niche applications such as

defense and space projects. In the mid-80‟s however, graphical user interfaces, or

GUIs were introduced, and the computer was accessible and usable by the general

public for everyday tasks.

In the last decade, there has a been a boom in mobile computing, where users

interact with using touch-screen display, another path breaking human-machine

interaction method. The next big thing in Human Computer Interaction (HCI) could

be touchless devices, where users interact with their mobile devices or traditional

2

computers using gestures, thus greatly simplifying the process. Another area where

gesture recognition could find use is in the fledgling field of Augmented Reality

(AR). Indeed, as of today, several of the leading consumer electronics manufacturers

are using AR natively in their products.

Therefore, we see that there is ample scope and reason for research in the field

of gesture recognition, and as a result, several approaches toward gesture recognition,

both hand gestures and facial gestures are being explored. Our work is a unique

approach to the same goal, and we believe it is a positive step toward the solution of

this problem.

3

1.2 Background

Most of the early work in gesture recognition is very hardware dependent, and

in some cases requires the user to wear some type of apparatus to track and recognize

his/her movements and gestures. There are several problems to this approach, the

most obvious being the user having to wear the apparatus, and this carries out the

natural and intuitiveness that one would want. Secondly, this type of approach is not

cost effective, as it requires specialized sensors to detect and recognize human

gestures. Thus, most of the recent works have tried to capture footage/images of the

users performing the gesture and then classifying that gesture from the footage/images

using mathematical models and algorithms. This eliminates the need of specialized

hardware, as most computers and mobile devices are equipped with a digital camera,

enabling easy access to video/images.

Gestures can be static or dynamic. Dynamic gestures are basically a sequence

of static gestures. Dynamic gestures are much more complex to analyse but are more

suitable for real time applications. Static gestures, on the other hand are simple, yet

useful for basic tasks, and they have the additional advantage of being less

computationally intensive. Several methods have been explored for recognition of

static gestures from images. Our work focusses on recognition of static gestures from

video feed.

1.3 Summary of previous work

Gesture Recognition has grabbed many eyeballs in recent history due to its

wide application in the fields of Human Computer Interaction (HCI), Robotics and

User Experience (UX). We can divide the existing approaches related to this literature

broadly into hardware intensive approaches and non-hardware intensive approaches

based on how features are extracted. Hardware Intensive approaches normally used

special hardware like depth cameras, Kinect sensors for capturing features from video

stream and then process the Images to predict the gestures. non-hardware Intensive

based approaches on the other hand used real time locally available and cheap source

such as web-cam, smartphone cameras, digital cameras etc. to fetch data and features

4

are extracted using standard Image Processing or Deep Learning Approaches and then

used various other techniques to predict the gestures.

 The works which have been done in recent past has the usage of both

traditional Image Processing and Deep Learning techniques for gesture recognition,

however Hidden Markov Model has been used more frequently. Hardware intensive

approaches like Ren et al. [1] used Kinect Sensor to detect hand shapes and then

proposed finger Earth Movers distance metric to remove noise from data stream.

However, this approach will work only for open hand gestures. Zhao et al. [2]

proposed Depth Camera to obtain Structure Steaming Skeletons (SSS) features for

human gesture recognition. Plawiak et al [3] adopted a methodology to track gestures

using a special device called DG5 VHand Glove which has 10 sensors. The above

mentioned approaches mainly extracts feature using some special hardware, which

makes these approaches far from practical. Since the cost of the apparatus used is

high, these methods find very less application in day-to-day usage. However, these

methods are quite accurate owing to dependence on hardware. Less hardware

intensive approaches are also used recently to recognize gestures. For example, Sefat

et al. [4] proposed the use of color space and HOG feature to detect gestures, but the

color space is very sensitive to lighting conditions, hence the robustness of the

approach cannot be guaranteed. Simao et. al. [5] introduced a novel concept of

detecting hand gestures using unsupervised approach. Motion based features and use

of Genetic Algorithms to detect gesture makes this work quite interesting. Hence less

work on interaction of softwares with machines has motivated us to work on this

interesting and complex problem.

5

1.4 Summary of present work

The approach we propose consists of two stages. First from the video, frames

are extracted, and from the frame, the position of the hand is detected. For this

purpose, a HAAR-cascade classifier was trained to distinguish hand vs. non-hand

images. These trained classifiers are then used to get a bounding box indicating the

region of the hand in the frame. Using the co-ordinates of the bounding box, the hand

region is the cropped out of the frame. If no hand is detected (i.e., no gesture is

performed) no gesture is reported.

However, if a hand region is detected in the frame, it is passed on to the next

stage in which we use a CNN to classify the gesture. For simplicity, only four

gestures have been used: the hand closed in the form of a fist, the index finger raised,

the first two fingers raised in a V-shape, and the thumb raised. A CNN was trained on

several thousand images for this purpose. The cropped out image is then fed as the

input to the Convolutional Neural Network. Now we are not passing the cropped out

Image directly , we mask out the Skin Region from the Cropped Image using HSV

Colorspace and eliminate background Noise . After this step we pass the Masked out

Skin Image into 6-Layered Deep CNN . This performs feature extraction and

classification of the image and gives a label for the image provided to it. This label is

then used to initiate a VLC Media Player Application which must be Preinstalled in

the Computer . The Gestures are Mapped to Open , Play Video and Close the

Application .

6

1.5 Organisation of thesis

This report/thesis is organized as follows: In Chapter 2, a brief theoretical

background of the theoretical concepts which are used is discussed. Specifically, a

framework for real-time object detection, and the use of Convolutional Neural

Networks for image classification are discussed. In Chapter 3, a workflow is proposed

to recognize gestures from video feed by the authors. In Chapter 4, the

experimentation performed in order to implement the proposed framework is

elaborately discussed. In the next chapter, Chapter 5, the results of the

experimentation performed are dealt with, and some advantages and disadvantages of

the proposed method are discussed. Finally, in Chapter 6, future possibilities are

explored, and some conclusions are drawn.

1.6 Resources used

For the purposes of hand detection, we used a machine with a 2.7 GHz, Intel

 Core i7 CPU, with 16 GiB of memory, running Linux (Ubuntu). For the classification

and feature extraction using CNN we used a machine with 2.3 GHz Intel Core i5

CPU, with 4 GiB of memory and a Nvidia GeForce 940M GPU on Linux (Ubuntu).

Images for training were mostly captured on a mobile phone camera at 1280x720

resolution. The following libraries and software were used:

Purpose Library/Software Used

Extraction of frames from video FFmpeg

Hand Detection OpenCV 3.1.0

 Pillow (forked from PIL)

 Numpy

 Matplotlib

Gesture Classification TensorFlow

 TFLearn

 Numpy

 OpenCV 3.1.0

Table. 1.1: Software Libraries used

7

2. THEORETICAL BACKGROUND

 A method for interacting with software using static gestures from video feed is

proposed, requiring minimal hardware, but achieving high accuracy comparable to

state-of-the-art algorithms. The proposed approach is broken into three stages: first

hand detection is discussed, then gesture classification is covered, and finally,

mapping of gestures to software is performed. In this chapter, the underlying

theoretical concepts are explained, which will enable the reader to relate with the

forthcoming matter.

2.1 Object Detection using HAAR Cascade Classifiers

The first stage of the proposed approach consists of hand detection from video

feed. It is pointed out to the reader that is essentially a binary classification problem.

Most of the work in the field of object detection is based on the seminal work of Paul

Viola and Michael Jones [Ref. No.]. In [Ref. No.], an algorithm to achieve robust,

real-time detection is explored. The most important advantage that HAAR Cascade

classifiers based on Viola-Jones algorithms have is their speed of detection. The

Viola-Jones algorithm has four features of interest:

a. HAAR features

Like previous approaches [Ref. Papageorgiou], Viola-Jones‟ approach

uses HAAR features. HAAR features are computed by sliding a window

with each HAAR-like feature kernel over the image. The value of the

feature is calculated as the difference of the sum of the pixel values under

the regions defined by the kernel. For example, in Fig. 2.1, the HAAR

feature is calculated as:

 |∑

 ∑

|

Simple HAAR-features were used: two-rectangle features, three-rectangle

and four-rectangle features, to compute a set features for the frame.

However, for a standard window of 24x24, the set of features is

overcomplete, with over 1.8x10
5
 features.

8

b. Creating Integral Image

One of the main contributions of [Ref. No.] is the concept of Integral

Images. To compute HAAR features, it is required to calculate the sum of

pixel values very frequently. To speed up this process, Viola-Jones

framework introduced the concept of integral images, which are summed

area tables. For each pixel value (x, y), the sum of all pixel values above

and to the left of (x, y) are calculated and stored in a look-up table. This

look-up table is therefore a intermediate representation of the original

image This intermediate representation of an image enables calculation of

HAAR features in constant time. Any time a sum over an area is required,

it can be done in constant time over a single pass over the image as :

Where I(x, y) is the value of the sum of all pixels above and left of the

pixel at (x, y), and i(x, y) is the pixel value. Refer Fig. 2.2 for the

explanation of (2) and (3)

Fig. 2.1 : Example of HAAR-like feature for edge

detection

9

c. Adaptive boost Training

Another significant contribution of [Ref. No.] is the algorithm for building

a classifier by choosing a small set of significant features using Adaboost

[Adaerf]. As was pointed out earlier, the number of HAAR features

calculated is over complete, the learning algorithm must sift out a large

number of unimportant features and select a small set of important ones.

This is done by having a weak classifier algorithm, such that it can only

use a single feature. This weak classifier is only just better than a random

guess. However, on many iterations, a new feature, and hence a new weak

classifier is chosen. The final classifier, the boosted classifier, is a

weighted combination of all such weak classifiers. After each iteration in

the training process, a weight equal to the error or loss on the current data

item is assigned to the data item. Finally, the boosted classifier is created

as the weighted sum of the above classifiers.

d. Cascading Classifiers

To increase the speed of classification, a method is developed by

combining a cascade of classifiers, in which each stage uses successively

more complex classifiers. The detector prepared by Viola and Jones had 38

such stages. Each stage has more features than the previous stage. If a

sample passes this stage, it is passed on to the next stage. Thus, if a sample

passes all stages, it is classified as containing a positive. It is therefore

noted that each stage eliminates false positives. Thus, a good stage should

have 100% true positives and some false positives. This cascade of

Fig. 2.2: Calculation of Integral Images

10

classifiers eliminates obvious negatives at early stages, and only retains

more promising regions that pass earlier stages for more complex

computation.

In our proposed approach, the concept of object detection was modified to

detect hands from videos. For this purpose, a HAAR cascade classifier was trained

using several thousand images. This is discussed in detail in Chapter 3. The resultant

classifier was used to get a bounding box from the image, marking the position of the

hand in the image (which is actually a video frame). This bounding box is then passed

on to the next module in the pipeline, which performs gesture recognition.

2.2 Image Recognition and Convolutional Neural Networks

The second stage of the proposed approach is the recognition of a gesture from

the image. At this stage, the bounding box is obtained from the output of the object

detection module described earlier. In this stage, this bounding box is passed on to a

image classifier, which recognizes it as one of four valid gestures, or as an invalid

gesture.

One of the most revolutionary ideas in image classification is due to Alex

Krizhevsky et al. [17]. While most existing approaches to image classification relied

on traditional machine learning techniques, they fail to encompass the complexity and

variability of objects in realistic settings. The novelty of [17] was in that a

Convolutional Neural Network (CNN) was used to classify images from the ILSVRC-

2012 dataset. An error rate of 15.3% was achieved using a CNN by Krizhevsky. A

Convolutional Neural Network is essentially a few convolutional layers in front of an

Artificial Neuron (ANN). The design of a CNN generally consists of the following

three stages:

1. Convolutional Layer: Convolutional Layers apply some kind of

convolutional operation to the image and passes the result to the next

layer. Each convolutional layer is like a filter applied to the input. The

convolution operation is explained in Fig 2.3. A small kernel can be

thought to be convolved over the entire image, producing an activation

map. For each position of the kernel over the image, the pixel values and

the weights of the kernel are multiplied element-wise and added. It is also

11

to be noted that the depth of the filter should be the same as the depth of

the image, so if the input image has dimensions 32x32x3 for a 3-channel

(RGB) image, the kernel also has to have depth 3. After the entire

convolutional operation, an array with depth 1 is obtained. This is called

the feature map for one filter. Stacking all the activation maps for the

entire depth of the input using various filters forms the output of the

convolutional layer.

2. Pooling Layer: Most often, a convolutional layer is followed by a pooling

layer. In this layer, down-sampling is performed. The most common form

of pooling is max pooling. In max-pooling, the image is partitioned into

non-overlapping rectangles of size 2, and the maximum of the four pixel

values is taken. Another common technique of pooling is L2-pooling. L2

pooling is similar to max-pooling except that instead of taking the

maximum value from the region of pixels, the square root of the sum of

squares of the pixel values is taken. The purpose, however, is the same as

max-pooling: To get a representative value for that region over which it is

applied, to reduce the feature space. The pooling layer serves to reduce the

size of the output of the convolutional layer, thereby reducing the number

of parameters. This reduces the computation and also helps prevent

overfitting. Pooling also provides translational invariance []. Pooling is

explained in Fig 2.4.

Fig 2.3: Convolution with stride size 1. Each time, the kernel is

shifted one pixel

12

3. Fully Connected Layer(s): This layer is essentially a hidden layer of the

ANN, which performs classification from the features selected from the

convolutional layers. This layer takes an input volume which is passed to it

by the preceding layer (pooling or ReLU/Softmax) and outputs a k-

dimensional vector, for a k-class problem. In this part of the CNN, each

unit or neuron is connected to every other neuron in the next and previous

layer. It is pointed out that this is in contrast to the Convolutional Layers,

where neurons are sparsely connected to each other. Activations are

calculated by matrix multiplication of pixel values and weights. The final

Fully Connected layer output the scores/predictions for each class.

Initially the network is set up with random weights (and biases). When the

input images are fed through the CNN, it predicts a class for each of the images. The

prediction is compared against the actual label, and a loss is calculated over the

images. Several loss functions are used commonly, prominently SVM loss [ref], Cross

Entropy Loss [ref] Mean Squared Error Loss[ref]. They are described as:

 ∑

 ∑

Where in each case, xi is the input pixel-array and yi is the label that specifies

the index of the correct class, and the hypothesis function s = h(xi, W), and Δ is a

hyperparameter. It is noted that the choice of the loss function is not fixed but is

chosen by the author according to his problem.

Fig 2.4: Max-pooling with a 2x2 kernel and stride of 2

13

 This preliminary process of passing training data to get predictions and

comparing is termed as a forward pass over the network. Next, a backward pass is

performed over the network, in order to calculate the gradients over each layer

progressively.

The gradient is calculated such that that the overall loss function is minimized.

The weights are then updated so as to minimize the objective function (loss). One of

the popular methods in which this is done is the Gradient Descent algorithm and its

many forms. (Online, Stochastic, etc.). In particular, for the i-th epoch (one entire

forward and backward pass is called an epoch), gradient descent updates the weight of

the j-th layer as:

where is the total loss, α is the learning rate, and

 denotes the

gradient of the loss function w.r.t. the weights of the current layer j, evaluated as

per (4), (5).

The learning rate is an important hyperparameter, as it controls the time taken

for training as well as the accuracy of the gradient descent algorithm. When the

learning rate is small, the gradient descent makes a smaller step in the direction of the

gradient, and as a result it takes time to converge to the minimum. However, when the

learning rate is larger, the algorithm takes larger steps in the direction of the gradient.

While this generally results in faster convergence, taking larger steps may cause the

algorithm to overshoot the minimum and the loss may not decrease with more

iterations, thus giving inaccurate results. Also, it is noteworthy that while from a

theoretical perspective, the Loss is calculated over the entire dataset, in practice this is

hardly the case. This is because evaluating the loss over a dataset consisting a million

or more images consumes far too much computational resources than is practical.

Therefore, some variation of Gradient Descent is commonly employed in which the

loss over a small „batch‟ of training examples is evaluated. The batch size is also a

hyperparameter in such cases. If one example is used at a time, the process is called

on-line gradient descent, because weights are updated constantly after each training

example has been processed.

 It is pointed out that in the problem of image classification, there arise

problems due to rotational variance, translational variance, scaling, illumination

variations. In a CNN, these problems are handled very robustly if there is adequate

14

training data available. This is due to the feature extraction performed in the

convolutional layers enable intermediate representations that capture the above

mentioned variances to a large extent.

In our proposed approach, image classification is used to classify the bounding

box obtained from the previous section into a gesture. It is to be remembered that

from the result of the previous section, a bounding box is obtained which contains a

hand performing a gesture. For classification, a Convolutional Neural Network is

designed, consisting of five (5) Convolutional Layers and two (2) Fully Connected

Layers. This is described in further detail in Chapter X. This CNN was trained with

images of gesturers performing four different gestures, namely, the fist closed, the

index finger raised, the first two fingers raised in a V-shape, and the thumb raised.

The output of the hand detection module is fed into the trained model. The CNN

predicts a gesture for the bounding box that is fed to it, and this gesture is passed on to

the next module, which performs some software action based on the gesture.

15

3. PROPOSED WORKFLOW

 A method for interacting with software using static gestures from video feed is

proposed, requiring minimal hardware, but achieving high accuracy comparable to

state-of-the-art algorithms. Since past works related to this involved hardware in

extraction of Gestures , we relied on Deep Learning based Methods which

outperforms the existing methods simply because Neural Networks can learn Features

which are invisible to Human Eye and Hardware sensors . The proposed Model

processes 15 Frame per second (15 fps) . The proposed approach is broken into three

stages: first hand detection is discussed, then gesture classification is covered, and

finally, mapping of gestures to software is discussed. The Overall Architecture of the

Proposed Method is Given in Fig 3.0

Fig 3.0: Illustrates the Architecture of Proposed Method

16

3.1 Hand Object Detection using HAAR Cascade Classifiers

Since the important part of this literature is hand gestures, so effective way of

detecting hand object is of paramount importance. There are many existing methods

of detecting Hand from a live video stream as discussed in previous works but having

a dedicated classifier for hand object is crucial for gesture recognition. The methods

which involves skin color matching and segmentation is not robust to skin color of

various races. Here deep learning outperforms this approach and makes this process

of hand object detection free from background, orientation and skin colour.

 For creating a dedicated hand classifier, we selected HAAR Classifier which

uses HAAR like Features which are discussed in Section 2.1(a). Using this classifier,

we can detect hand images from live video stream. So, input in this stage is the

temporal frames from Live Video Stream captured using standard Laptop Web

Camera. These temporal frames are fed directly to the Trained Hand Classifier. The

Training of the classifier is explained in details in next Chapter. In this step, these

temporal frame images are preprocessed by gray scaling them and resizing them to

100 x 100 size. The Trained Object Detector scans the image in a sliding window

fashion to return Confidence Score and the Bounding Box coordinates of the Hand

Object as Displayed in Fig 3.1. The detected box of Hand Object is padded with a

fixed threshold and cropped out of the Temporal Frame. This will be the input to the

Next step.

Fig 3.1: Open Hand detection Architecture using HAAR cascades

17

3.2 Gesture Recognition using Convolutional Neural Network

Hand gesture detection are the building block for connecting Software

Applications. So, efficacy of this step is very important for our proposed method. In

this work we are detecting 4 classes i.e. V-shape, Index, Thumb , Fist and Blank

Image which represents No Class / No Gestures. We trained our 6-layered

Convolutional Neural Network for 4 classes of gestures. The details of training the

CNN is explained later in section 4. The Temporal Frames which are passed from the

last stage of HAAR Classifier is the input to this stage . Here the Image contains the

Hand Region cropped out of Original Frame , but we cannot pass this information

directly to the Trained CNN Model because it contains background noise .There

exists 2 problems which are Addressed Here : (a) Detection of Hand in Noisy

Background (b) Detection of Hand in Plain Background.The algorithm to solve the

above mentioned issues are discussed below.

 To eliminate the background Noise , we implemented a colorspace based Skin

Segmentation on Detected Hand Frame to select only the Skin Region . The

colorspace used is Hue Saturation Value (HSV) Model since HSV color space is more

intuitive to how people experience color than the RGB color space. As hue (H) varies

from 0 to 1.0, the corresponding colors vary from red, through yellow, green, cyan,

blue, and magenta, back to red. As saturation(S) varies from 0 to 1.0, the

corresponding colors (hues) vary from unsaturated (shades of gray) to fully saturated

(no white component). As value (V), or brightness, varies from 0 to 1.0, the

corresponding colors become increasingly brighter. The input Hand Detected Image is

first converted into HSV Colorspace from RGB Colorspace as shown in Fig 3.2(b)

.This HSV model filters the skin pixels from the HSV Image. This filtered image is

then morphologically eroded and dilated to remove Noise and then Morphologically

Opened. This Opening of Mask removes unstable and scattered pixels from

background which does not represent skin pixels.

18

After this step the Skin Filtered Hand Image is Masked Out from the Original

Temporal Frame as shown in Fig 3.2(c) .

The image is again Preprocessed to detect the Hand in Plain Background as

shown in Fig 3.2(d) which is discussed in Details in Section 4.6 and then passed on to

The Deep-CNN Model for Classification of Gestures . The Softmax Layer of this

Neural Network Model predicts the Gesture in the Input Temporal Frame. The Output

of the Softmax Layer CNN Model is converted to One –Hot Array and then

Compared with Labelled Gestures to assign a Gesture Label to that Particular Input

Temporal Frame which is useful during Mapping of Software Applications .

Whenever the Video is Empty the Default Label assigned to the Frame is No-Gesture

Label . The Code of this is available in Repository [14].

The Architecture of the CNN Model starting from Input Hand Image to Final

Labelling of the Gesture is Illustrated in the Diagram as shown in Fig 3.2.

 (a) Detected Hand (b) HSV Format

(c) Masked Hand (d) Threshold Image

Fig 3.2 : Represents step by step process of Eliminating the background noise by

preprocessing before input to Deep-CNN

19

3.3 Mapping of Software Application to the Labelled Gestures

 This is an important Contribution since most of the Existing Models are used either

in hand-held devices or Arduino Based Devices by taking help of Foreign Sensors

besides the usage of Deep Learning Models. But in this literature we proposed a

interesting Mapping of Software Application to the Gestures identified without the

usage of any sensors or Hardware and yet it reaches a desirable amount of Accuracy

to be commercialized . This step is to make sure Human Gestures can connect and

control Desktop Applications .

 In this step , we take the Gesture Labelled Temporal Frame and we calculate

the Percentage generated by Softmax Layer of the Deep-CNN Model. Since, we are

dealing with Computer Applications , the accuracy must be high enough to control the

Applications with ease. For this purpose , we deviced an Algorithm for Mapping

Gestures to a Software Application which is illustrated in Fig …. .

Fig 3.2 : Illustrates the working principle of Gesture Recognition

20

1.

Algorithm

Input ← Video Stream with Labelled Temporal Frames

2. X-Bins ← [0 , 0.2 , 0.4 , 0.6 , 0.8 , 1.0]

3. Y-Bins ← [„No-Gesture‟ , „Thumb‟ , „Fist‟ , „V-Shape‟ , „Index‟]

4. Plot Bar_Graph (X-Bins , Y-Bins)

5. Label_count ← [] , freq ← 0 # (No Gesture has label 0)

6. for each bars in Bar_Graph do:

7. Max_Score ← max(Softmax Probabilities)

8. If Max_Score >= 0.7

9. Timer.sleep(2 , callback) and Timer.start()

10. Label_count=Label_count.append(index[Y-Bins(bars)])

11. function callback() { freq = mode(Label_count)

12. If freq >0 and freq = = index(Y-Bins(bars))

13. Fire Respective Applications

14. else

15. Abort and Label_count= []

If a labelled gesture is found in the Temporal Frame , it does not invoke a software

immediately , instead , it checks some parameters before invoking the software . As

per the above algorithm , at first a Bar Plot is obtained for each Temporal Frame in

which Y-axis contains all the Labels and X-Axis contains all the Probability of

Detection ranging from 0 to 1 i.e 0% to 100% . For each of these frames we select the

Gesture only if the Detection rate is in excess of 70 % . But , the application is not

invoked immediately , instead it waits for 2 seconds and scans the Gesture Label

during this period and the most frequent gesture between this period is noted down .

Then the software corresponding to the frequent gesture in this interval of 2 seconds is

invoked .

Table 3.1 : Algorithm for converting gesture to software action

21

 For this literature , our choice of Application is VLC Media Player , since it is

an open-source Media Player currently available in the market and we can easily

tweak the settings using code . The table below illustrates the gesture mapping with

softwares

Gesture Action

Thumb Opens VLC Media Player from Menu

V-Shape Pauses the Current Video if Running

Fist Plays a Rock Video Song from Memory

Index Stops Video and Closes VLC Media Player

No-Gesture Do Nothing

As of Now , we have fixed set of gestures but we can extend this to many gestures

and map different kinds of softwares in the future .

Fig 3.3 : Illustrates the working principle of Software Action Mapping to Gestures

Table 3.2 : Algorithm for converting gesture to software action

22

4. EXPERIMENTATION AND RESULTS

As mentioned previously, for each of the stages of hand detection and gesture

classification, models were trained using data collected by the authors. In this chapter,

the methods of collection and preparation of datasets for each stage is described.

Furthermore, the training performed on the dataset in order to achieve hand detection

and gesture classification is also described.

4.1 Collection of raw data for creating images

Five (5) volunteers were asked to perform each of the gestures for thirty (30)

seconds. Video footage of these were captured, and from the video footage, frames

were extracted to form images for training both of the models, hand detection as well

as gesture classification

4.2 Preparation of dataset for HAAR Classifier

For preparation of data for training the HAAR classifier, from the entire

collection of images, three (3) images of each gesture were taken. In addition, four (4)

images of the open hand (i.e., palm) were taken to increase variations. Therefore, in

total sixteen (16) images were taken as positives. Each of these images were

converted to grayscale and resized to various sizes, described below, as a parameter.

The negatives were collected from [6] , which is a database of images, which

are “organized according to the WordNet hierarchy (currently only the nouns), in

which each node of the hierarchy is depicted by hundreds and thousands of images.”

[6]. The various synets from which the images were collected are: room, house,

people. This is based on the assumption that interaction with computers is likely to

happen in an indoor environment, so the background is likely to contain rooms, and

people. In total, Like the positive images, these images were then converted from

RGB to grayscale and resized down from their original size to 100x100 pixels.

Next, each of the positive images were superimposed on the negative images,

to create the training images. For this, the opencv_createsamples utility provided by

OpenCV 3.1.0 was used. The opencv_createsamples utility takes an image, and super

imposes that image on a certain number of other images, and produces a new set of

superimposed images, and a log. In this process, the image is superimposed on

23

random locations on the base image and is rotated by random angles. The limit of

these rotations, the number of superimposed images to be created can be specified.

The parameters used by the authors to create samples are explained in Table 4.1. The

interpretations of the parameters may be found in [7]. It is to be noted that this entire

process was repeated for each positive image

Table 4.1 : Parameters used for generating samples

Parameter Interpretation Value

maxxangle Maximum rotation angle in x-direction, in

radians

0.5

maxyangle Maximum rotation angle in y-direction, in

radians

0.5

maxzangle Maximum rotation angle in z-direction, in

radians

0.5

maxidev Maximum intensity deviation of foreground 40

h Height of sample in pixels 20

w Width of sample in pixels 200

num Number of sample to generate 500 (each)

Following the process described above, eight thousand (8000) superimposed

images were created. The images were then compiled into a “.vec” file as required by

OpenCV 3.1.0. The “.vec” file is a binary format containing the images. The

opencv_createsamples utility not only records the position of the superimposed

images in annotation files, but also adds the coordinates of the superimposed images

to the file name itself. This is explained in Fig 4.2. Accordingly, for the 8000 images

generated, each image had the coordinated of the positive hand in the file name, and

this served as a label for future training processes. This prepared dataset is available at

[16].

24

4.3 Training a HAAR Cascade Classifier for hand detection

The next step involved the training of the boosted cascade classifier from the

from the “.vec” file and the dataset described in the previous section. For this purpose,

the utility program opencv_traincascade described in [8] was used. At this point it is

worthwhile to point out that several window sizes of positives were used: 20pixels,

30pixels, 40 pixels, and 50 pixels. Moreover, several classifiers were trained for

several stages. This was done to conduct a comparative study of the effect of window

size, and number of stages on classification accuracy. The opencv_traincascade

command can be supplied with various flags and options to control type of features

(HAAR or LBP), the boosting algorithm, types of HAAR features. The various

parameters, their interpretations are explained in Table 4.2

Table 4.2 - Parameters used for Training Classifier

Parameters Interpretation Value Used

numPos Number of positive samples to be used in each

stage

6000

numNeg Number of negative samples to be used in each

stage

10000

numStages Number of cascade stages to be trained Varied from

10-20

bt Boosting Algorithm: DAB/RAB/GAB GAB (Gentle

AdaBoost)

minHitRate Minimum desired hit-rate for each stage of

classification.

0.995

maxFalseAlarm

Rate

Maximum permissible false alarm rate for each

stage of classification.

0.05

Mode Type of HAAR features to use for training:

BASIC/CORE/ALL

BASIC (only

upright

features)

25

4.4 Testing and evaluation of Cascade Classifier

Using the method described in the preceding section, several classifiers were

trained. In this section, a comparative study of the classifiers is drawn. As mentioned

in Sections 4.1 and 4.2, various classifiers were trained for various values of:

a. Window Size: The size of the positive sample (square, in pixels).

Window sizes of 20, 30, 40, and 50 were used.

b. Number of Stages: Number of stages for which the classifier was

trained. Classifiers were trained for 10, 12, 15, 20 stages.

For testing purposes, a test dataset was generated from positive samples not

used for training the classifier. These positive samples were superimposed upon the

negatives in the exact same method described in Section 4.1. The total number of

superimposed images used in the test dataset was five hundred (500), each with one

positive sample in it. For detection of a positive from a image, python‟s OpenCV

implementation provides with a method called detectMultiscale(). For details, the

reader is requested to peruse through [9]. This method takes an image, in this case one

image from the test set, a cascade classifier, and some parameters, and returns the list

of coordinates of predicted locations of positives. The parameters greatly affect the

detection accuracy of the classifier. Therefore, these parameters were varied one at a

time, and the effects on performance were observed. The performance metric chosen,

was accuracy, as the dataset was not unfairly skewed towards positives or negatives.

We define accuracy as the number of true positives detected by the algorithm to the

number of positives in the dataset. The parameters varied are explained in Table 4.3.

26

Table 4.3 : Parameters used for Detectimg Objects

Parameter Interpretation Range of Values

Scale Factor At each stage, the image

is reduced by some factor,

and passed to the next

stage (more features).

This is the scale factor.

[1.01, 1.02, …, 2.20]

Minimum Neighbours The least number of

neighbours that a detected

object must have in order

to be retained in the next

stage

[1, 2, …, 50]

Window Size Size of positive sample to

be detected.

[20, 30, 40, 50]

Number of Stages Number of stages for

which classifier was

trained

10, 12, 15, 20

To further explain the effects of Scale Factor, Refer to Fig 4.1 and 4.2.

In Fig 4.1, the scale factor value = 1, and in 4.5, value = 10. It is to be noted

that there is a stark difference in the number of false positives detected by the

classifier. When minNeighbours = 1, just 1 neighbour is enough for the

algorithm detectMultiScale to pass on the region as a positive, and it is passed

on to subsequent stages. However, when minNeighbours = 10, a much more

stringent bound is placed, because 10 such regions must be identified before

the region can be classified as positive. As a result, many of the false positives

are eliminated through the stages and only promising examples are passed on.

Consequently, a much better result is obtained.

27

Finally, the algorithm used to calculate accuracy on the test-set described

above is explained in Table 4.4. For testing each parameter in Table 4.3, each of the

parameter was varied, keeping the others constant, and accuracy calculated on various

values of the parameter, per Table 4.3. The corresponding plots generated in Fig 4.3

through 4.5.

Fig. 4.1: Hand detection with minNeighbours = 1

Fig. 4.2: Hand detection with minNeighbours = 10

28

1. size ← 500

2. params ← scale, neighbours, stages, window size

3. vals ← range of values (refer Fig 4.3)

4. load cascade file

5. for each val in vals do:

6. count ← 0

7. for each image in test-set do:

8. detectMultiScale(image, params)

9. get predicted region for img

10. compare predicted regions and labels (in image name)

11. if predicted region covers ≥ 70% of actual region, count it as correct

12. accuracy ← correct predictions / size

13. plot accuracy vs. params.

Fig. 4.3: Plot of accuracy vs. Scale factor for both window sizes 20px and 30px

Table. 4.4: Evaluation and graph-plotting algorithm

29

From the above results, it was clear that the window size of 20x20 was the

most promising choice, so it was used for all further work. An additional advantage of

using smaller window size was that the number of false positives is reduced

substantially, as the window size decreased. For the values of minimum neighbours

Fig. 4.4: Plot of accuracy vs. min neighbours for both window sizes 20px and 30px

Fig. 4.5: Plot of hits vs. window sizes for different window sizes

30

and scale factor, values in the range 1-9 and 1.0-1.1 respectively were used. Also, as

the window size increases, so does the feature space, and the time taken and resources

consumed to train the classifier rises significantly.

4.5 Data augmentation for Convolutional Neural Network

As mentioned in Section 4.1, frames extracted from videos of volunteers

performing the four gestures were used as training images. For training the CNN,

approximately four hundred (400) images of each gesture. These were then manually

labelled, with the file names containing the label, and an indexing number for general

use. To the above set of images, another four hundred (400) images containing no

gestures were added, following the [10].

This dataset was augmented to increase variety [11] and quantity, and also to

take into account various lighting conditions, positioning and various spatial

orientation of samples which were not present in the original training data, but could

well be present in the real data. To augment the data, the following operations were

performed: (Also refer to Fig 4.10)

a. Linear translation: Randomly selected images were translated by varying

random amounts in the range [-20, +20] pixels on the x-axis, or y-axis, or

both.

b. Rotation: Randomly selected images were rotated in the range [-20, +20]

degrees, the rotation center was randomly selected

c. Illumination: The intensity of some randomly selected images were varied

by [-40%, 40%]

d. Noise: Some randomly selected images hand Gaussian noise injected into

them.

After the data augmentation processes described above, the size of the dataset was

increased to ten thousand (10,000) images.

Fig. 4.6: Rotation, Translation, and intensity deviations on images

31

4.6 Data pre-processing for Convolutional Neural Network

To reduce the feature space, some image pre-processing was performed on the

images. Another reason behind performing such image processing operations was to

remove the background from the images, keeping only the basic features of the hand.

Accordingly, each of the images after the processing in Section 4.4, was subject to the

following operations:

a. Cropped to square aspect ratio: Each of the images was cropped to a

square portion to remove any inconsistency that may arise because of

different sizes of images.

b. Converted to grayscale: Each image was originally a 3 channel (RGB)

image, was converted to a 1 channel grayscale image.to reduce

convolution operations and no of activation maps.

c. Gaussian Blur: Some portions of the images have no features at all, (i.e.,

totally white), whereas some are having the hand portions. Thus, the

values of the features vary diversely. Gaussian Blur can be thought of as a

mean normalization over all pixel values. In addition, Gaussian Blur also

reduces noise and detail in images.

d. Adaptive Thresholding: The principal purpose of thresholding is to remove

the background from the image. For every pixel if it falls within a range,

the pixel value is retained, otherwise it is replaced to remove it.

e. Erosion and dilation: Erosion is applied to remove unnecessary detail and

noise from the image. However, erosion also thins boundary of the image,

by removing pixels from the image boundaries. To counteract this, the

image is dilated, where the boundaries are again regenerated, and any gaps

created by erosion are bridged.

f. Median Blur: The above operations unfortunately, introduce unnecessary

specks and blemishes into the image, which are removed by median blur.

Refer to Fig 4.11 for a clearer idea. In Fig 4.11, one image from the dataset

has been chosen at random and the results of operations a. through f. are displayed.

32

Thus, each image in the augmented data set is subject to the above processing,

and the images such as g. are used for training the Convolutional Neural Network.

Before this is done, however, each image is also resized to 64x64 pixels. This is to

reduce the processing time. Most state-of-the art algorithms use 32x32 pixels, but

since the image has been stripped off most of its features, a larger size is chosen for

our purposes.

Fig. 4.7: Grayscaling, Gaussian Blur, Thresholding, Erosion, Dilation

and Median Blur

33

4.7 Architecture of Convolutional Neural Network and Training

The architecture of the CNN used to classify gestures was partly influenced by

a literature survey, as described in Chapter 1, and partly as a result of experimentation

with different architectures. The final architecture is as follows:

No. Layer Kernel Size Feature

Map/Stride

Activation Dropout

1. Convolutional 5x5 32 ReLU --

 Normalisation -- -- Local Response --

2. Convolutional 5x5 64 ReLU --

 Normalisation -- -- Local Response --

 Max Pooling 2x2 2 -- --

3. Convolutional 5x5 128 ReLU --

 Max Pooling 2x2 2 -- --

 Normalisation -- -- Local Response --

4. Fully Connected -- 1024 ReLU 0.5

5. Fully Connected -- 512 ReLU 0.5

6. Softmax -- 5 Softmax --

Various other hyper-parameters used were:

a. Learning Rate = 1.0x10
-3

b. Image Size = 64x64 pixels

c. Number of epochs = 50

d. Loss function in Classification Layer: Categorical Cross-Entropy [12]

e. Train:Validation Split: 4:1

f. Optimiser: Adam

g. Batch Size = 300

h. Steps Per Epoch = 50

Figure 4.8 shows the architecture of the CNN as depicted by Tensorboard [13].

Fig. 4.5: Architecture of CNN

34

The following Architecture was Trained using 10,000 Images as Mentioned in

previous Section. The Model was trained using Batch Size of 300 , with Number of

Epochs as 50 and Steps per Epoch was set to 50 . The Time taken to Train the above

mentioned Architecture was 4-5 Hours . The Model was trained on a Intel Core i5

Processor @ 2.3 GHz with 8 GB DDR3 Ram and 2GB Dedicated NVIDIA

GEFORCE GPU 940M Graphics Processor. The Training was continued until the

Validation and Total Loss got stagnant.

Fig. 4.8: Architecture of CNN as a computational graph

35

4.8 Testing and evaluation of Convolutional Neural Network

In this section, a comparative study is drawn on the CNN showing the effects

of reducing certain layers, and that of number of epochs on classification accuracy.

For this purpose, a new test data set was created with images previously not used.

These images were treated in the exact same way, described in Section 4.5. Five

hundred (500) total images were used to create a test data set. The following

performance metrics were used:[13]

a. Accuracy: The ratio of correctly classified samples to the actual number of

samples

b. Precision:

c. Recall:

d. F1-Score: (

)

To calculate accuracy, a script as run 5 times over the test set and each time,

the accuracy was calculated over each run, and the mean accuracy reported.

b a

c

Fig. 4.9: Training and Validation Accuracy, comparison with 1 and 3

convolutional layers

36

a. Training accuracy vs. iterations: Blue: 10 epochs, Red: 20

epochs

b. Validation Accuracy vs. iterations: Blue: 10 epochs, Red: 20

epochs

Fig. 4.10: Training and Validation accuracy 10, and 20 epochs

Fig 4.9 shows a comparison between a CNN with just 1 convolutional Layer

versus the architecture described by Table 4.5. Clearly the addition of more

convolutional layers contributes to a marked increase in training accuracy.

Figure 4.10 shows a comparison between training accuracy of CNN‟s having

the same architecture but trained for different epochs (10 and 20). Obviously, a

classifier trained for 10 epochs had better performance than one trained for 10 epochs.

Therefore, the final classifier that was chosen was the architecture in Fig 4.8,

and it was trained for 20 epochs using the data set previously explained. The results

are shown in Table. 4.7.

37

Table 4.7: Performance Report

 Precision Recall F1-score Support

1. 0.00 0.00 0.00 103

2. 0.99 1.00 1.00 107

3. 0.83 0.07 0.13 73

4. 0.31 0.81 0.45 94

5. 1.00 1.00 1.00 123

Average 0.64 0.62 0.56 500

Average Accuracy after 5 runs = 0.712

The proposed architecture was also compared against standard small sized

Models given in the literature of Orlando et al. [15] . We considered the Architectures

Arq1 , Arq3 as given in the Paper[15] which are described below .

Table 4.8: Details of Architectures for Comparison

Arq 1 Arq 3

Type Kernel Type Kernel

Convolution 10 x 10 Convolution 36 x 36

Max Pooling 8 x 8 Max Pooling 5 x 5

Convolution 5 x 5 Convolution 7 x 7

Max Pooling 10 x 10 Fully Connected ---

Fully Connected --- Softmax 4

Softmax 4

The Models are evaluated on the basis of 4 classes, since these models were

originally designed for detection of 3 classes namely: Open Hand , Close Hand and

No Class , but we used all the 4 Gestures we used to find the Efficacy of this Model .

38

The training of the Above Models was done using same Dataset which was

used for our Model. We ran the Models till 20 Epochs. After Training the Models, the

Models were tested against Live Video Stream of Web Camera, which acted as the

Test Dataset. The Test Video was run for 10 Seconds i.e. 3000 Frames since Real

Time Web Cameras are mostly 30 fps. Hence the architecture of Simulation was

similar to all the 3 models.

We calculated the Accuracy of the Models using the Metrics mentioned in this

section. Since we were dealing with Software, our main concern was Accuracy.

So we found out the Accuracy Metric of the Models Arq1, Arq3 and Proposed

Model which is illustrated in Table 4.9

Table 4.9: Comparative Study on Performance of Architectures

Architecture No of Frames Epochs Accuracy

Proposed Method 3000 20 71.24 %

Arq 1 3000 20 32.66 %

Arq 3 3000 20 61.35 %

The comparative Study of the Architectures shows that the Proposed Method

works best for 5 gestures with a Mixture of Open Hand, Close Hand and No Gesture ,

However Arq3 performs decently to obtain 2
nd

 best spot in terms of Accuracy inspite

of having the Smallest Architecture among the 3 used whereas Arq1 performed

Poorly mainly because of the Kernel used and less number of Feature Maps , hence it

could not extract enough Features to Distinguish one gesture from another .

39

5. CONCLUSION AND FUTURE WORK

5.1 Conclusion

We have built the software which can detect four static hand gestures from a video

feed, and take actions for a specific application, vlc media player. A detected closed

fist causes the player to play rock-music categorized videos, thumbs-up causes the

application to start shaped gesture puts the player on pause and show of an index from

the user closes the vlc media player. Importantly, the application is for a single user at

a time.

5.2 Future Work

Our work has been limited only to static gestures. However, it can be extended to

dynamic gestures which can easily be fit in a two-dimensional frame by looking for

consecutive frames from a video feed instead of only one frame before labeling the

gesture of the detected hand in the frame. For example, a swipe-left gesture can be

detected by checking for the changing positions of the detected hand (with all five

open fingers) in closely consecutive frames from right to left. Also, in order minimize

the presently running window, an index finger moving from top-right to down-left can

be used. The software can easily confuse this minimize gesture with a show of only

index finger gesture, and to avoid the such situations, the software should wait for a

few seconds before taking the action to see if there is a change in the position of the

hand in the given frame. This Proposed Gesture Detection Model is currently working

in Approximately 15 fps and since we are also planning on making the software

available for all the applications available on any device , our future goal is to make

this model Realtime Interaction with Software .Currently , the software will be

running for a specific application, like the vlc media player . Also, the gestures will

perform more generalized actions, like show of index finger will not only close vlc

media player but any presently running application/s. Speed analysis of the dynamic

gestures need to be done. If the gesture is performed too fast, it should be discarded,

because it's likely to be a reflexive action rather than a gesture interaction on behalf of

the user. Interacting with software using gesture in purely the user's choice and he can

run/stop the software according to his/her discretion.

40

References

1. Z. Ren, J. Yuan, J. Meng, and Z. Zhang, “Robust Part-Based Hand Gesture

Recognition Using Kinect Sensor”, vol. 15, no. 5, pp. 1–11, 2013.

2. Q. Z. Sheng, “Online Human Gesture Recognition Area Chair: Max

Mühlhäuser”, pp. 23–32, 2013.

3. M. Nied, “Hand Body Language Gesture Recognition Based on Signals from

Specialized Glove and Machine”, vol. 3203, no. c, pp. 1–10, 2016.

4. J. Umverslty, “A Hand Gesture Recognition Technique from Real Time

Video”, no. May, pp. 21–23, 2015.

5. M. A. Simão, P. Neto, and O. Gibaru, “Unsupervised Gesture Segmentation

by Motion Detection of a Real-Time Data Stream”, vol. 3203, no. c, pp. 1–9,

2016.

6. ImageNet: http://image-net.org by 2016 Stanford Vision Lab, Stanford

University, Princeton University.

7. Leidart, Daniel. “Ubuntu Manuals.” Ubuntu Manpage: Ubertooth-Btle -

Bluetooth Low Energy (BLE) Sniffing and More, Ubuntu, 3 July 2010,

manpages.ubuntu.com/manpages/trusty/man1/opencv_createsamples.1.html.

8. OpenCV Cascade Classifier Training:

https://docs.opencv.org/3.4/dc/d88/tutorial_traincascade.html

9. Jones, Viola. “Cascade Classification¶.” OpenCV: Image Thresholding,

OpenCV, 4 May 2003, docs.opencv.org/3.0-

beta/modules/objdetect/doc/cascade_classification.html?highlight=detectmulti

scale.

10. Some reference

11. J. Wang and L. Perez, “The Effectiveness of Data Augmentation in Image

Classification using Deep Learning”

12. R. Murugan, “Implementation of Deep Convolutional Neural Network in

Multi-class Categorical Image Classification”, arXiv.org:1801.01397v1

13. C. Goutte, and E. Gaussier, “A Probabilistic Interpretation of Precision,

Recall and F-Score, with Implication for Evaluation”, Xerox Research Centre,

6 Chemin de Maupertuis, Meylan, France.

http://image-net.org/
http://vision.stanford.edu/
http://vision.stanford.edu/
http://www.stanford.edu/
http://www.princeton.edu/
https://docs.opencv.org/3.4/dc/d88/tutorial_traincascade.html
https://arxiv.org/abs/1801.01397

41

14. S. Nag, “Gesture Recognition And Software Mapping”

https://github.com/sauradip/Gesture-Recognition-And-Software-Mapping, 14-

May-2018. [Online]. Available:https://github.com/sauradip/Gesture-

Recognition-And-Software-Mapping. [Accessed: 14-May-2018].

15. J. Orlando, P. Arenas, and R. J. Moreno, “CONVOLUTIONAL NEURAL

NETWORK ARCHITECTURE FOR HAND GESTURE RECOGNITION,” pp.

1–4, 2017.

16. : Ganguly, Pallab Kumar. “Hand Classifer Dataset.” GitHub, 2 Sept. 2017,

github.com/pallabganguly/opcv-project.

17. A. Krizevsky, “ImageNet Classification with Deep Convolutional Neural

Networks”, University of Toronto,

https://www.cs.toronto.edu/~kriz/imagenet_classification_with_deep_convolu

tional.pdf

https://www.cs.toronto.edu/~kriz/imagenet_classification_with_deep_convolutional.pdf
https://www.cs.toronto.edu/~kriz/imagenet_classification_with_deep_convolutional.pdf

42

Plagiarism Report

The Report has been checked by a Standard Plagiarism checker software

Plagiarism Checker – X (Version 6.06). The entire report starting from Introduction

up till references is passed a Word document in the software. The software has

reported 88% Unique content which confirms the authenticity and originality of the

Literature written by the Authors. The detailed report is shown below.

Fig : Reflects the Authenticity Check Results done using Plagiarism Checker X

Version 6.06

